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ABSTRACT 

Creation of underground infrastructures and facilities provides a viable solution 

to rapid urbanization and population growth with the limited and increasingly 

congested space on the surface, which has posed a critical challenge to urban 

population’s demands on the living environment. This includes road and rail transport 

systems, utility tunnels, water and sewage, parking, storage, and even living quarters. 

These underground structures are constructed in rock and soil materials, which are not 

precisely known before excavation. This means that there is intrinsic uncertainty due to 

the inherently heterogeneous nature of the ground, which can have adverse effects on 

the design and construction of underground works. Traditional deterministic design 

methods are based on a limited understanding of this inherent uncertainty, which may 

result in over- or under- design of underground structures. To address this issue, a 

systematic assessment of uncertainties in rock mass classification systems has been 

conducted in this study, in conjunction with a reliability-based approach, to evaluate 

the stability of underground openings. The rock mass quality Q-system has been used 

as an example of rock mass classification systems in this study, but the approach can 

also be applied to other rock mass classifications such as rock mass rating (RMR) and 

geological strength index (GSI). 

First, a Markovian prediction model based on the rock mass classification Q-

system has been proposed to provide the probabilistic distribution of the rock mass 

quality Q for unexcavated tunnel sections using the Monte Carlo Simulation (MCS) 

technique. In addition, an analytical approximation approach has been proposed to 

derive the statistics (mean, standard deviation, and coefficient of variation) of the Q 

value based on statistics of Q-parameters (input parameters in the Q-system). The 

proposed prediction model and analytical approach were applied to a case study of a 

water tunnel and have been validated by the recorded Q data during tunnel construction.  

Next, an MCS-based uncertainty analysis framework has also been developed 

to probabilistically characterize the uncertainty in the rock mass quality Q-system and 
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its propagation to rock mass characterization and ground response evaluation. The 

Shimizu highway tunnel was used as the case study for validation. The probabilistic 

distribution of the Q value was obtained using the MCS technique based on relative 

frequency histograms of the Q-parameters. Similarly, probabilistic estimates of rock 

mass parameters were also derived with Q-based empirical correlations, which were 

subsequently used as inputs in numerical models for the evaluation of excavation 

response. In addition, the probabilistic sensitivity analysis was also conducted in the 

MCS process to identify the most influential Q-parameters. The effects of the 

correlation and distribution types of uncertain Q-parameters on the Q value and 

associated rock mass parameters were also examined.  

Finally, a reliability assessment with a strain-based failure criterion has been 

performed using the First Order Reliability Method (FORM) algorithm. The 

probabilistic critical strain and Q-based empirically estimated tunnel strain were 

incorporated in the performance function. The Shimizu tunnel case study was also 

utilized to perform reliability analysis as a basis for the evaluation of tunnel excavation 

stability. Reliability analysis was also performed using the MCS technique for 

comparison. In addition, the effects of correlation, distribution types and coefficient of 

variation in input parameters on the reliability (reliability index and probability of 

failure) have also been studied. The reliability assessment results show that the Shimizu 

tunnel was not expected to experience instability after excavation. The excavation 

stability has also been evaluated using analytical and numerical approaches, and results 

were consistent with those derived from the reliability approach. 

Uncertainty and reliability assessment using rock mass classification systems, 

as presented in this report, can probabilistically characterize uncertainties and risks and 

provide an improved rock mass characterization and excavation response evaluation as 

compared to traditional use of safety factor. It can also offer insightful information and 

valuable input for the probabilistic analysis and design of excavation and support 

strategies as we as construction time and cost estimation for underground structures. 
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CHAPTER 1  

INTRODUCTION 

1.1 Background and motivation 

Increasing global population and urbanization has increased the demands for 

additional living spaces of all kinds (Goel et al., 2012). Creation of underground space 

offers a feasible strategy for development of additional functional spaces since the 

underground space can include infrastructures that are difficult, if not impossible, to 

build above ground.  Underground space also offers natural protection and great safety 

against different kinds of disasters (Goel et al., 2012). The use of underground space 

with tunnels is expected to be a viable solution in view of the increasingly limited and 

congested space on the surface, especially in urban areas (Brox, 2017). Tunnels have 

been used for a range of infrastructure needs, including road, water and wastewater, 

utility, oil and gas pipeline, access and ventilation in mining, waste disposal, storage, 

defense, etc. However, since tunnels are constructed in geo-materials (rock and soil), 

which are known to involve some degree of uncertainty before tunnels are excavated, 

there is an intrinsic risk for encountering unknown geological conditions (Spackova, 

2012). Thus, the uncertainty in geological conditions poses a critical challenge in 

underground construction. 

Rock mass classification systems, including the rock mass rating (RMR) 

(Bieniawski, 1976), Q-system (Barton et al., 1974) and geological strength index (GSI) 

(Hoek and Brown, 1997), allows the overall rock mass quality to be described and rock 

mass properties to be characterized, and can also offer initial estimates of support 

requirements of underground excavations (Hoek, 2007). Rock mass classification 

systems have been used as empirical rock design tools and have enjoyed widespread 

application due to the easy use of simple observations and measurements to offer a 

quantitative index of overall rock mass quality (Palmstrom and Stille, 2010).  

Traditionally, however, most empirical methods, including the rock mass classifications, 

rely on single mean (or expected) values, and there may be significant variations 
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between the upper and lower bound values (Palmstrom and Stille, 2010). In other words, 

uncertainties in rock mass classifications are often treated deterministically, which fails 

to cover the possible wide range of rock mass quality and may result in over- or under- 

design of the engineering structure. The overdesign indicates the conservative approach, 

where the safety is assured while cost and schedule overruns are the end result. In 

contrast, the under-design implies an aggressive approach, involving higher risks of 

failure and damage to the surrounding structure or safety implications. In traditional 

deterministic design methods, uncertainties in rock mass classifications are not 

logically characterized and estimates of reliability are not provided. There is a lack of 

complete understanding of how uncertainties in rock mass parameters propagate and 

affect the characterization of rock mass behavior. Modeling and evaluating 

uncertainties in rock mass classifications before construction is critical and can provide 

insightful information for the optimum design of underground excavation and support 

on the basis of safety and economic risk. Thus, it is necessary to adequately assess 

uncertainties in rock mass classifications, and to analyze the effects on the rock mass 

characterization and evaluate ground behavior in a more rigorous way. 

Uncertainty and reliability based methods represent more rational approaches 

to quantitatively describe uncertainties in input parameters as well as providing a 

consistent and complete measure of level of reliability and risks in the analysis and 

design process. In this report, uncertainty analysis in the rock mass classification was 

conducted using the Q-system as an example. The uncertainty in the Q-system was 

probabilistically characterized and its effects on the characterization of rock mass 

properties and the evaluation on the tunnel excavation response were examined. 

Moreover, a reliability approach with the strain-based failure criterion has also been 

used to assess the stability of underground tunnel after excavation.  

1.2 Research objectives 

To improve the understanding on the probability-based uncertainty analysis in 

the rock mass classification, using the Q-system in this study, and its application to the 

reliability assessment for the underground excavation stability, the research objectives 
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in this report are as follows: 

(1) Probabilistically characterize and predict uncertainties in rock mass classification 

Q-system before tunnel excavation and validate the predicted results with rock mass 

quality data collected during tunnel construction. 

(2) Investigate the effects of uncertainties in input parameters in the Q-system on the 

overall Q value and associated rock mass characterization and ground response 

evaluation for underground structures. 

(3) Perform reliability analysis with probabilistic Q-system on the basis of a strain-

based failure criterion to evaluate the tunnel excavation stability. 

1.3 Report outline 

This report is composed of six chapters, which are outlined below. All references 

are placed at the end of the report. 

Chapter 1 presents the general background, the motivation for this research, 

research objectives and report outline. 

 Chapter 2 presents the literature review in the report. The commonly used 

modern rock mass classification systems, sources of uncertainties in rock mass 

classifications and treatment approaches are introduced. In addition, reliability-based 

methods and the application in underground construction are also described. 

 Chapter 3 presents a rock mass classification Q-system-based prediction model 

using the Markov Chain technique to probabilistically assess rock mass quality before 

tunnel excavation. Based on the proposed prediction model, the probability distribution 

of the overall Q value can be derived at arbitrary locations along the tunnel alignment 

using Monte Carlo simulations. In addition, an analytical approximation approach to 

deriving statistics (mean, standard deviation, and coefficient of variation) of the Q value 

has also been developed given statistics of input parameters in the Q-system. The 

proposed prediction model and analytical approach have been applied to a case study 

of a water tunnel and validated by the actual Q value recorded during tunnel 

construction.  

 Chapter 4 presents a paper titled “Monte Carlo simulation (MCS)-based 
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uncertainty analysis of rock mass quality Q in underground construction” This paper 

has been published in The Journal of Tunneling and Underground Space Technology. 

An MCS-based uncertainty analysis framework has been proposed to probabilistically 

quantify the uncertainty in the rock mass classification Q-system. The proposed 

framework has been implemented in the Shimizu highway tunnel case study. Based on 

relative frequency histograms of Q-parameters (input parameters in the Q-system), the 

probability distribution of the Q value is obtained using the MCS technique, which is 

then used to probabilistically estimate rock mass properties and responses with 

appropriate empirical correlations. The probabilistic estimates of rock mass properties 

are also adopted as inputs in a finite element model for the probabilistic evaluation of 

the excavation-induced tunnel displacement. In addition, the probabilistic sensitivity 

analysis is conducted in the MCS process to identify the most important Q-parameters 

in the Q-system based on several ranking criteria. The effects of correlation and 

distribution types of input parameters in the probabilistic Q-system on the Q value and 

associated rock mass parameters have also been investigated. 

Chapter 5 presents a reliability assessment using the Q-based empirical 

approach for the preliminary evaluation of the excavation stability using the FORM 

algorithm. The probabilistic critical strain and the Q-based empirically estimated tunnel 

strain are incorporated in the limit state function for reliability analysis. Reliability 

analysis is also conducted using the MCS technique for comparison. The Shimizu 

tunnel case study is also utilized as an example to perform reliability assessment on the 

excavation stability. The effects of the correlation, distribution types and coefficient of 

variation in input parameters on the reliability have also been investigated. The 

reliability results on the stability evaluation of the excavated tunnel have been 

compared to those derived using analytical and numerical approaches. 

 Chapter 6 is the final chapter of this report. Major findings and conclusions are 

summarized, and directions for future work are also presented.  
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CHAPTER 2  

LITERATURE SURVEY 

This chapter presents the literature review for this research, which mainly includes 

uncertainty analysis in rock mass classification systems and reliability-based 

assessment in underground construction. The commonly used rock mass classification 

systems, involved uncertainties and treatment approaches have been introduced. 

Reliability-based methods, the comparison with factor of safety and reliability 

assessment in underground construction are also presented. 

2.1 Uncertainty analysis in rock mass classification systems  

2.1.1 Rock mass classification system 

Rock mass classification involves the process of placing rock masses into groups 

or classes based on defined relationships and has played an indispensable part in 

engineering design and practice (Bieniawski, 1989). Rock mass classification systems 

provide a basis for understanding the characteristics and behavior or rock mass, serving 

as the basis of the empirical design and relating to experiences obtained in rock mass 

conditions at one site to another. The objectives of the rock mass classification are 

proposed (Bieniawski, 1989): 

(1) Identify the most important parameters impacting the rock mass behavior. 

(2) Subdivide a particular rock mass formation into groups or classes of similar 

behavior. 

(3) Provide a basis for understanding the characteristics of each rock mass class. 

(4) Relate the experience of rock mass conditions at one site to the conditions and 

experience gained at another. 

(5) Derive quantitative data and guidelines for rock engineering design, e.g. support 

guidance for underground excavations. 

(6) Provide a common basis for communication between engineers and geologists 

The advantages of rock mass classifications have also been summarized(Bieniawski, 

1989):  
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(1) Rock mass classification systems can provide a checklist for the ground parameters 

to be collected, thus improving the quality of site investigation  

(2) Classification systems can provide quantitative information for engineering design 

purposes  

(3) These quantitative classifications enable better engineering judgement and more 

effective communication on a project. 

Problems in the application of rock mass classifications arise when (Bieniawski, 

1993): 

(1) Using rock mass classification as the ultimate design solution, i.e. neglecting the 

analytical, numerical and observational methods; 

(2) Using on rock mass classification only without cross-checking with other 

classification systems 

(3) Using rock mass classification without sufficient input data 

(4) Using rock mass classifications without realizing the conservatism and limits arising 

from the databases on which they are based. 

Commonly used rock mass classification systems are briefly introduced below, 

namely the RMR system, Q-system and the GSI system. 

RMR system 

The Geomechanics Classification or the RMR system was developed by 

Bieniawski (1976) to evaluate the excavation stability and support requirements of 

tunnels. Since then it has been improved based on more collected case histories, and 

the 1989 version of the classification is introduced herein. The RMR system has six 

input parameters, i.e. uniaxial compressive strength (UCS) of rock material, rock 

quality designation (RQD), the spacing of discontinuities, condition of discontinuities, 

groundwater conditions and the orientation of discontinuities (Bieniawski, 1989). 

Ratings are given to each input parameter, and the summation of these ratings is the 

overall RMR value. 

In applying the RMR system, the rock mass is subdivided into a number of 

structural zones (Bieniawski, 1989). Each zone is relatively geologically homogeneous 
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and classified separately. A major structural feature such as a fault or the change of 

rock types may be considered as the boundary of structural zones (Hoek, 2007).  In 

terms of the application of the RMR system, it provides a set of guidelines for 

excavation and support of 10 m span rock tunnels constructed using drill and blast 

methods (Hoek, 2007). The RMR is also applied to estimate the unsupported span and 

stand-up time for excavated tunnels. In addition, the RMR system can also be used to 

estimate rock mass properties based on some empirical correlations (Bieniawski, 1989). 

Q-system 

The rock mass classification Q-system was developed for the determination of 

rock mass characteristics and support requirements (Barton et al., 1974). This empirical 

rock mass classification was proposed based on 212 case records of hard rock tunnel 

from Scandinavia. The numerical value of the Q index ranges from 0.001 to a maximum 

of 1000 on a logarithmic scale, and the overall Q value is defined by the Q-equation as 

follows (Barton et al., 1974): 

     
wr

n a

JJRQD
Q

J J SRF
=       (2.1) 

where RQD is the Rock Quality Designation; Jn is the joint set number; Jr is the joint 

roughness number; Ja is the joint alteration number; Jw is the joint water reduction factor 

and SRF is the stress reduction factor. 

As seen in the Q-equation, the Q value is the product of three quotients of its input 

parameters. The first quotient (RQD/Jn) represents the rock mass structure and is a 

measure of the block size; the second quotient (Jr/Ja) indicates inter-block shear strength 

and relates to the roughness and frictional characteristics of joint walls, and the third 

quotient (Jw/SRF) is an empirical factor describing the active stress . Based on the 

incorporation of new case records, the Q-system has been updated and improved. A 

normalization factor considering the UCS of the intact rock has been incorporated into 

the Q-equation and a new value Qc is generated (Barton, 2002).  A support chart based 

on the overall Q value has been developed and updated for the rock support estimation 

by relating the Q value and the equivalent dimension of excavated openings (Barton, 
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2002; Barton et al., 1974; Grimstad, 1993). Relationships between the Q value and the 

seismic velocity, depth, deformation modulus of rock mass, required support pressure, 

have been developed, and these parameters can be roughly estimated using the 

empirical correlations based on obtained Q value (Barton, 2002). 

GSI system 

The GSI system was introduced to estimate the reduction in rock mass strength 

under different geological conditions (Hoek and Brown, 1997). The GSI can be 

estimated based on field observation and geological descriptions by combing the rock 

mass structure (block size) and the rock discontinuity surface conditions (roughness 

and alteration). It is also recommended to use a range of GSI values rather than single 

number or value (Hoek, 1998a). The GSI has been modified to cover more complex 

geological conditions, such as shear zones or heterogeneous rock masses, and the GSI 

chart are updated to incorporate these categories (Hoek and Marinos, 2000a; Hoek et 

al., 1998). In addition, the GSI system has been interpreted in a more quantitative 

manner by many authors (Cai et al., 2004; Hoek et al., 2013; Hoek et al., 1998; Marinos 

et al., 2005). 

In terms of the application, the GSI system has been used to estimate the rock 

mass properties in rock engineering (Hoek et al., 2002; Marinos and Hoek, 2000). It 

also serves as a tool to estimate the parameters in the Hoek-Brown criterion of rock 

masses (Hoek and Brown, 1997; Hoek et al., 2002).  

2.1.2 Sources of uncertainty in rock mass classification system 

Uncertainty can be categorized as aleatory or epistemic uncertainty (Baecher 

and Christian, 2003). Aleatory uncertainty relates with the natural, intrinsic randomness 

which may be dealt with probabilistic or statistical analysis. In contrast, the epistemic 

uncertainty results from incomplete knowledge and can be reduced when additional 

information is available. Einstein and Baecher (1983) also divided the sources of 

uncertainty in geotechnical engineering as: (1) inherent spatial and temporal variability; 

(2) measurement errors; (3) model uncertainty; (4) load uncertainty; and (5) omissions. 
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 Rock mass classification systems are based on experience and thus have similar 

inherent uncertainties (Stille and Palmström, 2003). Input parameters in the rock mass 

classification have inherent uncertainties due to the spatial variability and heterogeneity 

of rock mass itself. The determination of the ratings for input parameters in the rock 

mass classification systems also involves uncertainty. For example, RQD can often lead 

to a sampling bias due to a preferential distribution of joints (Grenon and Hadjigeorgiou, 

2003). In addition, uncertainties also take place in observing and recording joint 

characteristics. The mapping results for the joint location for different observers along 

the same scanline are very different (Ewan et al., 1983). Some input parameters relating 

to joint features in the rock mass classifications are prone to mischaracterization 

(Palmstrom and Broch, 2006). 

 Hadjigeorgiou and Harrison (2011) also noted that rock mass classification 

systems have uncertainties and not considering them may lead to statistical errors. Two 

groups of errors can be generated in the use of rock mass classifications. The first group 

relates with the intrinsic errors in the rock mass classifications, such as the errors of 

omission, errors of superfluousness, and errors of taxonomy. The omission means the 

failure to consider pertinent characteristics in rock mass classifications, such as the 

absence of UCS in the Q-system and the in-situ stress condition in the RMR system. 

The consideration of rock mass anisotropy is also omitted in both RMR and the Q-

system. With regard to the superfluousness, the RQD and discontinuity spacing are a 

good example since these two parameters are not mutually independent, indicating that 

either can be estimated from the other. The errors of taxonomy are due to the 

requirement to pick a number or rating value for a geomechanical property. For 

example, for the joint water reduction factor Jw in the Q-system, it is not clear how to 

classify “medium inflow with significant outwash of joint fillings”. In contrast to the 

first group of error types, the second group is associated with implementation, such as 

the errors of human error and errors of ignoring variability or uncertainty. The 

assignment of only one value, instead of a range of distribution, ignores the 

heterogeneous and random nature of rock mass properties. The risk analysis for a 
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certain rock engineering project also depends on the level of confidence in known 

relevant parameters, which is dependent on the amount of available information, the 

variation of input parameters in rock mass classifications and its impact on the probable 

rock mass quality index and the required minimum rock mass quality for compatibility 

with proposed excavation requirements (Carter, 1992). 

2.1.3 Dealing with uncertainty in rock mass classification system 

Empirical assessment methods, including those based on rock mass 

classification systems, are essentially deterministic approaches (Carter, 1992). 

However, the use of only one subjectively assigned value cannot consider the wide 

range of actual rock mass characteristics that are often encountered in engineering 

practice. It is appropriate to provide a range of values, instead of a single value, to each 

input parameter in rock mass classification systems and to assess the significance of the 

final result (Hoek, 2007). The obtained mean value can be used in choosing the basic 

rock support while the range can provide an indication of the possible adjustments that 

may be required to meet different conditions encountered during tunnel excavation. It 

is also recommended by Hoek (1998a) that a range of values of GSI should be used in 

preference to a deterministic value. Barton et al. (1994) have used the Q-histogram 

logging approach to collect the histogram of input parameters in the Q-system, and 

statistics (min, max, mean, and mode) of the Q value can be obtained using the interval 

analysis. However, Panthi (2006) pointed out that the mean and range values have poor 

statistical properties and are sensitive to extreme values. Similarly, Bedi (2013) also 

stated that the possible wide range of Q value intervals lacks sufficient information and 

may cause difficulty in decision-making. Carter (1992) suggested that it is 

advantageous to replace the subjectivity associated with a selecting single value with 

the use of probabilistic sampling approaches accounting for the uncertain and variable 

nature of rock masses. These probabilistic approaches can provide some insights into 

the degree of uncertainty in the input parameters in the rock mass classifications. Carter 

(1992) also stated that geological-geomechanical factors, such as rock strength and rock 

structure, are particularly amenable to the probabilistic treatment and that it is 
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advocated to evaluate the collected geotechnical site investigation data for rock 

engineering projects from a probabilistic point of view. The probabilistic approach in 

evaluating rock mass classifications, rather than straightforward use of deterministic 

assessment, can provide the designer not only with a better understanding on the 

sensitivity of the output to variations in the input parameters, it also reflect the basic 

uncertainties inherent in the rock mass parameter data on which the design is predicated 

(Carter, 1992). If the uncertainty and variability in the rock mass classifications are not 

sufficiently characterized, they might propagate through the analysis and design 

process and adversely impact the ground response and support performance (Langford, 

2013). 

 Fortunately, probabilistic evaluation on the rock mass classification, which 

enables the description of the complete probability distribution function (PDF) of rock 

mass parameters, is capable of quantifying the uncertainty and its effect on the design 

performance. Cai (2011) presented that both the intrinsic and subjective uncertainties 

in rock mass classifications can be captured in the probabilistic evaluation and the 

probabilistic design can be accordingly conducted. Bedi (2013) derived the probability 

density function of the Q value in the Gjovik cavern using the Monte Carlo simulation 

(MCS) method based on the assumed triangular distributions of Q-parameters. Carter 

(1992) also performed similar simulations to derive the distribution of the Q value and 

suggested that simple triangular distributions often provide sufficient accuracy. Panthi 

(2006) assumed the normal or lognormal distributions for RQD, Jr and Ja parameters 

while the triangular distributions for Jn, Jw and SRF parameters in the Q-system, and 

the PDF of the Q value was obtained using the MCS technique for the Himalayan 

mountainous tunnels. Analogously, the distribution of GSI was also estimated from the 

statistical distributions of joint characteristics in field mapping, which was then used as 

the input in the numerical model for probabilistically evaluating the excavation 

response and stability of underground construction (Cai, 2011; Idris et al., 2015; Tiwari 

et al., 2017). The probability distributions of RMR and GSI were derived based on the 

probabilistic descriptions of discontinuities and intact rock properties using the MCS 
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technique, and the strength and deformability properties of rock mass were also 

probabilistically estimated based on some empirical relationships (Sari, 2009; Sari et 

al., 2010).  

 However, few researchers have investigated the contributions of input 

parameters in the rock mass classification systems within a probabilistic framework. In 

addition, the majority of studies fail to consider the interdependency between uncertain 

input parameters and its impact in rock mass classifications. Further, although rock 

mass parameters are amenable to probabilistic treatment, few studies have examined 

the effects of distribution types of input parameters in rock mass classifications on the 

overall rock mass quality and associated rock mass characterization and response. 

2.2 Reliability-based assessment in underground construction 

2.2.1 Factor of safety and reliability concept 

Traditionally, the deterministic factor of safety (FS) is applied to deal with the 

uncertainties in the geotechnical engineering. The factor of safety is calculated as the 

ratio of characteristic resistance over the characteristic load. The characteristic 

resistance and load are conservative estimates of resistance and load in the system 

(Fenton and Griffiths, 2008). When the characteristic values are equal to the means, 

then the factor of safety can be defined in terms of the mean resistance and mean load: 

R

Q

FS



=      (2.2)  

where FS is the factor of safety, R  is the mean resistance, Q  is the mean load. 

Griffiths and Fenton (2007) stated that all uncertainty is lumped into the single 

factor of safety, and the factor of safety does not provide information on the level of 

safety in the design. The same factor of safety can generate two designs that have 

different levels of safety. This may be due to factors of safety agreed on in design codes 

or standards not being calibrated to each other. It is also common to apply the same 

factor of safety for a given type of geo-structures, such as long-term slope stability, 

without considering the uncertainties involved in the calculation (Duncan, 2000). 
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Fenton and Griffiths (2008) stated an example of three geotechnical designs, having the 

same mean factor of safety, can have considerably different probabilities of failure. The 

actual design safety is not adequately reflected in the mean factor of safety. Tapia et al. 

(2007) also showed an example of slope design A and B, in which the FSA (1.35) is 

smaller than the FSB (1.50). However, the greater uncertainty in design B, indicated by 

larger spread, results in higher probability of failure despite the larger FS value in 

design B in comparison to design A. This is an example for the slope design, however, 

it can be equally applicable to underground construction. 

The factor of safety in the conventional geotechnical engineering is generally 

determined heuristically, based on experiences of similar projects. However, as 

questioned by Griffiths and Fenton (2007), what if we do not have experience, such as 

using new construction materials or in a new environment? What if the experience that 

we have is not positive? The traditional factor of safety approach cannot answer the 

above questions. Griffiths and Fenton (2007) also suggested that it is difficult to pick 

an optimum factor of safety since the FS has no real meaning in terms of reliability. 

The ambiguous nature of the factor of safety has also been reported by Low and 

Einstein (2013), and two different definitions on the factor of safety against the wedge 

falling were discussed. Each definition has its rationale while the values of FS can differ 

by an order of magnitude. Lilly and Li (2000) also stated that the factor of safety, by 

definition, is a binary criterion. Either the excavation is stable (FS>1) or fails (FS<1) 

due to the fact that excavations at limit equilibrium (FS=1) are very rare in practice. 

Zhang and Goh (2012) also pointed out that failure in underground excavation may 

occur even when the FS is larger than 1.0.  

To overcome these issues, reliability-based approaches have been developed to 

provide a more consistent and complete measure of the safety level considering the 

uncertainties involved. The subsection below will briefly introduce the reliability 

theory. 

2.2.2 Overview of reliability theory 

(1) The general case 
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The performance function G(X) is used to describe the performance of 

geotechnical structures, which also defines the acceptance criterion for the system in 

terms of the limit state function (where X is the collection of all relevant input random 

variables).The resistance R(X) and the load acting on the system Q(X) can be used to 

construct the performance function, and the relationship can be expressed as follows: 

( ) ( ) ( )G X R X Q X= −     (2.3) 

The critical limit state, indicated by G(X) = 0, defines the boundary between 

safe and unsafe regions. G(X) > 0 means stable conditions are expected while G(X) <0 

indicates the system has failed to meet the acceptance criterion.  

Note that in underground construction, the resistance and load can rarely be 

separated since the ground response depends on the support type and installation 

sequence. The performance function can therefore be expressed with respect to a 

limiting value for the ground response parameter (e.g. displacement, strain, plastic 

radius) (Langford, 2013). 

The probability of failure, or the probability of unsatisfactory performance, can 

be defined as: 

( ) 0
[ ( ) 0] ... ( )f X

G X
p P G X f x dx


=  =     (2.4) 

where ( )Xf x is the joint probability density function of the collection of random 

variables X. This integral is generally non-tractable or impossible to solve analytically 

when many random variables are involved. Thus, approximate methods, including First 

Order Second Method (FOSM), First Order Reliability Method (FORM), Point 

Estimate Method (PEM) and Monte Carlo Simulation (MCS), are used to evaluate the 

integral. 

(2) Reliability index 

In geotechnical engineering, the safety margin M is defined as the difference 

between the resistance R and the load Q (Baecher and Christian, 2003). 

M R Q= −      (2.5) 
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The mean value of the safety margin M is  

M R Q  = −     (2.6) 

where M , R , Q  are the mean value of safety margin M, the resistance R, and the 

load Q, respectively. 

The variance of the safety margin M is  

2 2 2 2M R Q RQ R Q     = + −      (2.7) 

where M , R , Q  are the standard deviation (SD) of the safety margin M, the 

resistance R and the load Q, respectively; RQ  is the correlation coefficient between R 

and Q. 

The reliability index   is defined as: 

2 2 2

R QM

M R Q RQ R Q

 


     

−
= =

+ −
    (2.8) 

The probability of failure pf can be given according to the following equation 

based on the assumption that the safety margin M is normally distributed. 

( 0) ( ) 1 ( )fp P M  =   − = −    (2.9) 

where pf is the probability of failure, ( )  is the cumulative distribution function of the 

standard normal variable,  is the reliability index. 

 Unlike the factor of safety, the reliability approach enables the consideration of 

uncertainties in the input parameters and the level of safety and reliability can be 

quantified. Based on this, consistent levels of reliability can be achieved among 

different designs. In addition, different to the experience-based factor of safety, the 

reliability-based approach can provide the ability to develop new designs which achieve 

a specified reliability target. Moreover, by quantifying the reliability, the cost-benefit 

analysis can also be carried out to balance the construction costs against the risk of 

failure (Griffiths and Fenton, 2007).  



16 

 

However, despite the advantages of the reliability approach over the traditional 

factor of safety, reliability approaches have not yet gained widespread application in 

geotechnical practice. There are two main reasons (Duncan, 2000): first, reliability 

theory contains some statistical terms that may not be very familiar to geotechnical 

engineers; second, there is misconception that the application of the reliability approach 

requires more data, time and effort than the traditional geotechnical analysis. Duncan 

(2000) stated that simple reliability analyses, which require neither complex theory nor 

unfamiliar statistical terms, require minimal additional effort compared to the 

conventional analyses and should be used in geotechnical practice. Several example 

applications were used to illustrate the simplicity and practicality of the reliability 

approach. It has also been advocated that the reliability approach should complement, 

instead of replacing, the factor of safety analyses in providing measures of acceptable 

geotechnical design (Duncan, 2000). 

2.2.3 Reliability-based methods 

The following subsections describe the reliability methods that are commonly 

used in reliability analysis and reliability-based design in underground structures. These 

reliability methods can account for the effects of the variability of input parameters on 

the resulting output variable, including the First Order Second Moment (FOSM), the 

First Order Reliability Method (FORM), the Point Estimate Method (PEM) and the 

Monte Carlo simulation (MCS). 

FOSM 

The FOSM method uses the first terms of a Taylor series expansion of the 

performance function to evaluate the mean value and variance of the performance 

function (Baecher and Christian, 2003). The Taylor expansion is truncated after the 

linear term, and this is called the first order. The first two moments of the output 

variable are to be estimated, in which the variance is a form of the second moment and 

the highest order statistics in the analysis, and this is termed as second moment (Fenton 

and Griffiths, 2008). If the number of the random variable is N, this method needs either 
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estimating N partial derivatives of the performance function or performing a numerical 

approximation with evaluations at 2N+1 points (Baecher and Christian, 2003). 

 The FOSM method is relatively simple and widely used since it requires the 

evaluation of a minimal number of terms and only the first statistic moments are needed. 

The evaluation points in the FOSM method are similar to those that are used in 

parametric sensitivity analysis, thus the contributions of each input parameter can also 

be revealed (Langford, 2013). However, it should be noted that the accuracy of the 

FOSM method deteriorates caused by the truncation of the Taylor expansion series after 

the linear terms if the second and higher derivatives of the performance function are 

significant, e.g. in situations where the performance functions are highly non-linear 

(Fenton and Griffiths, 2008). In addition, the probability distribution functions are not 

taken into account for input parameters, and only the mean and standard deviation are 

used, which may also result in the approximation errors. Moreover, different values for 

the probability of failure are obtained using different performance functions for the 

same problem, indicating the non-uniqueness and inconsistency of reliability evaluation 

using FOSM (Baecher and Christian, 2003). 

FORM 

To overcome the problems in the FOSM method, the FORM method was 

developed by Hasofer and Lind (1974) based on a geometric interpretation of the 

reliability index as a measure of the distance in dimensionless space between the mean 

point of the multivariate distribution of input parameters to the boundary of limit state 

surface. The point where the reliability index ellipsoid touches the limit state surface is 

termed the design point. A spreadsheet method using the SOLVER add-in with the 

optimization routine for the Excel can be efficiently used to determine the reliability 

index in the reliability analysis (Low and Tang, 1997). The distribution types for the 

input random variables can be defined, and the correlation structure between variables 

can be captured by the correlation coefficient matrix. The probability of failure can also 

be approximated based on the assumption that the performance function is normally 

distributed.  
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The design point in the FORM spreadsheet, i.e. the x* value, indicates the most 

likely failure point on the limit state surface. The distance between the design point and 

the mean value point of each input parameter reflects the sensitivity of the performance 

function to that input variable. The ratio of the mean value to the design point value (x*) 

is also similar to the partial factor in limit state design in Eurocode 7. However, the 

partial factors are specified in Eurocode 7 while the design point values are determined 

automatically in the FORM spreadsheet. The design point values can reflect 

sensitivities, correlation structures, standard deviations, and probability distributions in 

a fashion that the prescribed partial factors cannot reflect (Low, 2008b). 

PEM 

The PEM method was proposed by Rosenblueth (1975) to approximate the 

mean and standard deviation of the performance function. It is used to obtain the 

statistical moments of the performance function by evaluating at a set of selected points. 

The PEM method is a weighted average method, and solutions at different evaluation 

points are combined with proper weights to get an approximation of the statistic 

moments of the output variable. The two-point estimate method for the first two 

moments of uncorrelated random variables is commonly used, and sampling points are 

selected at one standard deviation above and below the mean value of each random 

variable.  If the performance function has N random variables, then there will be 2N 

sampling points considering all combinations of evaluation points (Fenton and Griffiths, 

2008). If all random variables are uncorrelated, then the weight value is simply 1/2N for 

each random variable (Langford, 2013). 

The PEM method is preferable to other methods for cases with five or fewer 

random variables in terms of computation efficiency. However, the number of 2N 

evaluations can be a very large number if many random variables are involved. In 

addition, as with FOSM method, it does not account for the probability distribution off 

the performance function. Generally the normal distribution is assumed both for the 

input and output variable. Further, little information is known about the low probability 

conditions since the performance function is only evaluated at one standard deviation 
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above and below the mean value. In other words, values beyond the bounds are not 

considered and these low probability events outside of the bounds may lead to high 

consequences, thus posing a great risk to the design (Langford, 2013). It is also noted 

that the PEM method does not perform well in capturing mixed behavior or mode 

switches since the abrupt change in behavior will not be detected in the PEM (Valley 

et al., 2010). 

MCS 

In situations where the performance function is complicated and difficult to 

assess, the probability of failure can be evaluated directly using the MCS simulation 

technique. The distributions of the input parameters should be assigned first, and then 

single values of the input variables are randomly sampled in one iteration according to 

their respective distributions. This set of sampled input values are then used to calculate 

a value of the output parameter. With a number of iterations, more input values are 

sampled and accordingly a number of output values are generated. The statistical 

moments of the output can be estimated and an appropriate distribution function can be 

determined for the output variable. Based on the obtained distribution of the 

performance function, the probability of failure can be calculated as the probability that 

the performance function is less than or equal to zero.  

The MCS technique is straightforward and has the advantage of conceptual 

simplicity. The distributions for the input parameters can be specified based on the 

collected information, and the correlation structure between input variables can also be 

captured. The major disadvantage is that it is computationally expensive and time 

consuming. The computation efforts are extremely high if adequate accuracy of 

calculation is to be satisfied especially when the estimated probability of failure is very 

low (Baecher and Christian, 2003). The considerable computational effort can be 

reduced using variance reduction techniques in which the accuracy level is sustained 

while the required number of computations is reduced. The MCS simulation can be 

used as a complement to discrete sampling methods to ensure an accurate evaluation of 

the system performance especially for complex problems (Langford, 2013). 
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2.2.4 Reliability evaluation in underground construction 

Uncertainties are unavoidable in geotechnical engineering, including 

underground construction, and they stem from loads, geotechnical properties, 

measurement errors, calculation models etc. (Ang and Tang, 2007; Baecher and 

Christian, 2003). The limitations of the FS-based design approach, which has been 

traditionally used in the geotechnical practice, have been pointed out, and alternatives 

including the partial factor design in Eurocode 7 and the load and resistance factor 

design (LRFD) approach in United States, which is equivalent to limit state design 

(LSD) in Canada, have been developed (Ang and Tang, 2007; Baecher and Christian, 

2003; Fenton and Griffiths, 2008). The LRFD, LSD and partial factor approaches, are 

philosophically similar and the focus is the re-distribution of the factor of safety into 

separate load and resistance factors or partial factors for ground parameters (Phoon et 

al., 2003). 

The LRFD approach subjectively incorporates uncertainties of load and 

resistance into the design process by assigning separate factors to each. The LRFD 

approach has been used extensively in North America for geotechnical structures, in 

which the prescribed limit state in LRFD should yield a constructed system having a 

target reliability or an acceptable probability of failure (Fenton and Griffiths, 2008). 

The LRFD is used relatively straightforward in gravity-driven structures, such as the 

foundation and retaining wall design, as the loads and resistances can be considered 

separately in the design (Langford, 2013). However, the LRFD approach is more 

complicated in underground structures. The system performance is defined by the 

relationship between deformations, loads that have been induced by rock mass stresses, 

and the capacity of support elements, thus limiting its applicability in the underground 

works (Langford, 2013). Fortunately, reliability methods are capable of assessing how 

uncertainty in rock mass parameters propagates through the analysis and design to 

obtain a measure of uncertainty in the system performance. The reliability-based 

approach provides a more consistent and complete measure of risk since it not only 

defines the expected case (as with a deterministic analysis) but it also provides a 
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measure of design performance based on the probability of failure (Langford, 2013). 

The reliability-based approach using the FORM spreadsheet with an expanding 

ellipsoid has the ability to seek the most-probable design point without presuming any 

partial factors and to automatically reflect sensitivities from case to case (Low, 2008b). 

The superiority of reliability-based methods to approaches including the traditional 

factor of safety, LRFD and the partial factor approach is summarized in (Phoon et al., 

2003). 

Despite its benefits, the reliability analysis in the geotechnical engineering has 

been focused on surface geotechnical projects and has not yet achieved widespread in 

the design of underground construction (Langford 2013). While some productive 

research has been done on the reliability analysis in underground construction 

(Bjureland et al., 2017; Langford and Diederichs, 2013; Liu and Low, 2017; Low and 

Einstein, 2013; Mollon et al., 2009a, b, 2010), more attention should be paid to some 

issues in this area. To start with, the reliability analyses in the current research are 

mostly based on analytical solutions or numerical procedures. However, in the 

analytical solutions, the ground-support interaction is often used to establish the 

performance function, and this is always based on some simplistic assumptions that are 

rarely met in practice (Li and Low, 2010; Su et al., 2011). For example, the 

convergence-confinement method (Carranza-Torres and Fairhurst, 2000; Panet and 

Guenot, 1983) was adopted by Li and Low (2010) to construct the performance function 

of tunnel response for reliability analysis, in which a circular tunnel was assumed to be 

subjected to hydrostatic stresses with uniform internal pressure around the tunnel 

perimeter. Due to the implicit characteristics of the performance function in 

underground construction, numerical procedures with finite element or finite difference 

models using different algorithms have been used to construct the limit state function, 

including the response surface method (Hamrouni et al., 2017; Lü et al., 2011; Mollon 

et al., 2010), regression methods (Basarir, 2008; Zhang and Goh, 2015; Zhu et al., 2008), 

artificial neural networks (Adoko et al., 2013; Lü et al., 2012; Mahdevari and Torabi, 

2012), support vector machines (Tan et al., 2011; Zhao, 2008; Zhao et al., 2014) and 
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radial basis functions (Bai et al., 2012; Fang et al., 2005; Wang et al., 2016). However, 

the numerical procedures are generally computationally expensive, which requires a 

great deal of computational effort. In addition to the analytical and numerical 

procedures, some empirical relationships or evidences with regard to tunnel response 

(e.g. displacement, strain, and plastic radius) have also been developed to evaluate the 

excavation stability (Barton, 2002; Barton et al., 1994; Marinos and Hoek, 2000; 

Sakurai, 1983). However, no current research has adopted such empirical correlations 

in reliability evaluation to preliminarily assess the stability of underground excavations. 

In addition, the focus of the majority of the research is the illustration of the newly 

proposed reliability analysis approaches or algorithms, and hypothetical examples are 

generally used with assumed statistical data of rock mass parameters, indicating few 

case studies with real rock mass parameter data have been adopted to validate proposed 

approaches or algorithms. Moreover, previous work has focused only on the 

deterministic critical strain using the strain-based limit state function in the reliability 

assessment on underground construction. In other words, the previous work failed to 

consider the uncertainty in the critical strain itself.  
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CHAPTER 3  

A STUDY OF A PROBABILISTIC Q-SYSTEM USING A MARKOV CHAIN 

MODEL TO PREDICT ROCK MASS QUALITY IN TUNNELING 

3.1 Abstract  

Uncertainties in rock mass conditions are mainly caused by the inherently 

inhomogeneous nature of rock masses. Assessment of rock mass quality without 

accounting for inherent uncertainty often leads to excessive conservatism in design and 

construction, resulting in a negative effect on overall design and construction processes; 

thus, accurate prediction of rock mass quality is critical to save project cost and time. 

In this study, to advance rock mass quality assessment, a Q-based prediction model to 

assess probabilistic rock mass quality has been proposed using the Markov chain 

technique with quantitatively characterized uncertainties. Based on the Markovian 

prediction model, the statistical distribution of the Q value has been derived from 

arbitrary locations along a tunnel alignment using Monte Carlo simulations. The 

predicted results derived using the proposed probabilistic prediction model have also 

been compared to those obtained using the deterministic prediction approach. In 

addition, an analytical approximation approach to deriving the statistics (mean, 

standard deviation, and coefficient of variation) of the Q value given statistics of Q-

parameters has also been developed. In this study, the proposed prediction model and 

analytical calculation approach were applied to a case study of a water tunnel and have 

been validated by the actual Q values recorded during construction. The proposed Q-

based prediction model is capable of assessing the rock mass quality of unexcavated 

tunnel sections using a probabilistic approach, thus serving as a supplement to geologic 

exploration and prospecting in planning and preliminary design stage. The proposed Q-

based model is also useful in evaluating excavation support strategies as well as 

construction time and cost, providing decision support for the optimization of tunnel 

design and construction. 
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3.2 Introduction  

Accurate prediction of rock mass conditions is a main focus in the underground 

construction and tunneling industry (Haas and Einstein, 2002). However, most 

subsurface rock mass conditions are not sufficiently known before construction. In 

general, rock mass conditions have been mostly evaluated for the worst-case scenario 

in traditional deterministic analyses, leading to biased conclusions since the inherent 

uncertainty of the rock mass conditions is not considered, resulting in serious 

construction delays and cost overruns of projects (Langford, 2013; Sousa and Einstein, 

2012). In contrast, if this uncertainty is well modeled and analyzed before construction 

start, it can help significantly reduce risks as well as project costs, providing proper 

decision support for excavation-support strategies (Spackova, 2012).  

Many geologic prediction techniques, such as geostatistical approaches and 

Markov models, have been developed to assess geological uncertainty in tunneling and 

underground construction (Chan, 1981; Chen et al., 2017; Ferrari et al., 2014; Ioannou, 

1987; You and Lee, 2006). The Markov process approach is of particular interest 

because geological processes can be well addressed by the Markov process (Chan, 1981; 

Guan et al., 2012; Ioannou, 1987). Chan (1981) has shown that geological parameters 

can be probabilistically predicted using the Markov Chain technique. In addition, the 

Markov process approach has some advantages over semivariogram and 

autocovariance-based geostatistical methods because a Markov chain model can be 

implemented with limited data (less than ten boreholes) to simulate geological 

uncertainty, whereas variograms or autovariance functions require a great amount of 

data, e.g. more than tens of boreholes (Qi et al., 2016). Additionally, the transitional 

probability used in the Markov process approach can be geologically interpreted more 

easily than the variogram or autocovariance function, contributing to the popularity of 

the Markov model (Carle, 2000; Elfeki and Dekking, 2001; Elfeki and Dekking, 2005; 

Guan et al., 2012; Park et al., 2005; Ye and Khaleel, 2008). For these reasons, the 

Markov process has been widely used for geologic predictions in diverse fields in 
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geotechnical engineering (Bi et al., 2015; Elfeki and Dekking, 2001; Felletti and Beretta, 

2009; Haas and Einstein, 2002; Min et al., 2008; Ruwanpura et al., 2004). 

In the field of underground construction, the ground is often described behaviorally 

and allocated a ground class based on the field observations (Stille and Palmström, 

2003). However, as a descriptive and behavioral system, the documentation of ground 

conditions in some ground classifications based on field observations does not seem to 

be very clear since the ground classifications rely largely on subjective observations 

(Palmstrom and Stille, 2007). The rock mass is subjectively classified without a 

numerical quality rating; in other words, the ground conditions are described 

qualitatively (Bieniawski, 1989). In addition, a limited number of geologic parameters 

and parameter states are generally used to characterize the ground conditions, which 

may lead to inadequate evaluation of the overall rock mass conditions. For instance, 

only two parameters (the N value in the standard penetration test and the percentage of 

clay content) were used to describe geologic classes (Leu and Adi, 2011), and only two 

fuzzy states (severe and not severe) were adopted to characterize weathering grades 

(Ioannou, 1987). Thus, the importance of some geological input parameters in ground 

classification seems to be ignored in current research and practice. Additionally, 

interdependency or correlation among geological input parameters in ground 

classifications is disregarded (Leu and Adi, 2011). Often, a ground classification is 

determined by several case-dependent geologic parameters based on a specific 

individual project. However, most of the aforementioned limitations of ground 

classification can be overcome using a probabilistic Q-system. 

The Q-system — proposed by (Barton et al., 1974) in the Norwegian Geotechnical 

Institute (NGI) for the design of support in underground excavations — is a quantitative 

rock mass classification system. As an empirical method, the Q-system has been 

developed based and updated on a large number of case histories and updates of global 

tunneling projects and contains six parameters that are critical during underground 

construction (Hoek, 2007). Each input parameter of the Q-system has several states 

with different numerical values, which provides relatively complete descriptions of 
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ground conditions (Hoek, 2007); thus, the Q-system as a quantitative rock mass 

classification system has an advantage relative to the qualitative ground classifications. 

In the Q-system, the numerical Q value can be calculated with individual ratings 

assigned to each input parameter within its range according to the Q-equation (Barton 

et al., 1974). Consequently, sensitivity analyses can be performed by investigating the 

effect of each Q-parameter on the overall Q value by changing one parameter while 

keeping the other parameters constant. The correlation among the Q-parameters can be 

quantitatively characterized in the Q-equation. Furthermore, in the Q-based support 

chart, several rock classes and possible support patterns have been defined with 

extensive case histories and updates (Barton, 2002; Barton et al., 1974; Grimstad, 1993), 

and a support pattern can be determined from the obtained Q value. Empirical rock 

mass classification systems, including the rock mass rating (RMR), the Q-system and 

the geological strength index (GSI), have inherent uncertainties (Palmstrom and Stille, 

2007; Palmstrom and Stille, 2010). However, it is possible to probabilistically 

characterize the uncertainties in the Q-system and to specify the excavation support 

strategies using the Q-based rock classes in a probabilistic way. 

The Q-system is advantageous over the ground classification in quantitatively 

characterizing the rock mass conditions, which accounts for the inherent uncertainty 

involved. Thus, in this chapter, a Q-based prediction model for rock mass quality is 

proposed with the Markov process prediction approach by considering the uncertainties 

in the Q-system. We have demonstrated that the proposed Q-based prediction model is 

capable of the quantitative prediction of rock mass quality before tunnel excavations 

with a probabilistic method, providing useful information not only for assessing 

excavation support strategies but also for saving project time and cost in underground 

construction and tunneling. 

3.3 Methodology 

3.3.1 The Markovian prediction approach  

Markov process and Markov chain 
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The Markov process refers to a stochastic process that has a Markov property, and 

the Markov chain is a special case of the Markov process with discrete states (Benjamin 

and Cornell, 2014). The Markov property, also named memoryless or single-step 

memory, denotes that the probability of the future states of the process depends only on 

the present state but not the past sequence of states (Benjamin and Cornell, 2014). 

Tunnel geology can be viewed as a random process, and each geological parameter 

follows a continuous-space and discrete-state Markov process (Chan, 1981; Ioannou, 

1987). To be more specific, the spatial variability of geological parameters can be 

characterized by transitions in and out of their parameter states, each of which has an 

extent of persistence. Each particular geologic parameter is considered a scalar random 

process X(t) whose state probability is a function of the distance t from an arbitrary 

point, such as the tunnel portal (Chan, 1981; Ioannou, 1987). Thus, the Markov property, 

or the single-step memory, can be expressed in mathematical terms as follows: 

1 1 1 1 1 1[ ( ) | ( ) , ( ) ,...] [ ( ) | ( ) ]i i i i i i i i i iP X t x X t x X t x P X t x X t x+ + − − + += = = = = =   (3.1) 

where 1 1, , ,...i i ix x x+ −  are the outcomes of the random variables 1 1( ), ( ), ( ),...i i iX t X t X t+ −  

at locations 1 1, , ,...i i it t t+ −  1 1( ...)i i it t t+ −    along the tunnel axis from the arbitrary 

origin, respectively. 

Elements of the Markov process 

The Markov process is defined by three elements: the transition probability, the 

transition intensity coefficient, and the interval transition probability of geological 

parameters, all of which can be estimated with general geologic information of the 

tunnel area (Chan, 1981; Ioannou, 1987). The transition intensity matrix A contains the 

transition intensity coefficient ci and the transition probability Pij and is useful in 

predicting the state probability of geological parameters.  
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The parameter Pij denotes the probability that the next state of a geological 

parameter is j given that the present state is i. It can be estimated as the ratio of the 
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number of transitions from the state i to the state j to the total number of transitions out 

of the state i. The transition intensity coefficient ci has a physical meaning of the 

reciprocal of the extent of a geological parameter state, which indicates at what length 

the parameter state will persist before a transition to other states takes place.  

Both Pij and ci can be estimated by statistical procedures if sufficient information 

is available in the tunnel area, including the geologic profile or the geologic map. If the 

amount of available data is limited in practice, subjective judgments are required from 

experienced experts who are familiar with the geology of the tunnel area. The Markov 

process is assumed to be homogeneous within some areas that have the same geologic 

history, in which the parameters Pij and ci are considered constant independent of 

location (Chan, 1981; Ioannou, 1987).  

The interval transition probability matrix V, the matrix of the interval transition 

probability vij, is used to characterize the probabilistic behavior of the Markov process 

X(t) over several transition intervals. It can be expressed as follows: 

0 0( , ) [ ( , )]ijV t t v t t= , 0 0 0( , ) ( ) [ ( ) | ( ) ]ij ijv t t v t t P X t j X t i= − = = =    (3.3) 

where 0( , )V t t  is the interval transition probability matrix, and 0( , )ijv t t  is the interval 

transition probability, denoting that the probability of the Markov process X(t) will be 

in state j at location t given that the current state is i at location t0. 

The interval transition probability V(u) of a Markov process satisfies the forward 

Kolmogorov differential equation, and the solution can be written as follows: 

2 2( ) (1/ 2!) ... (1/ !) ...uA m mV u e I uA u A m u A= = + + + + +     (3.4) 

where I is the unit matrix and the distance 0u t t= − . 

State probability interpolation of a geologic parameter between boreholes 

When imperfect observations are made at location-specific boreholes, the states of 

the geological parameters can be described probabilistically. The state probability of a 

geologic parameter X at a location between two boreholes can be calculated as shown 

in Figure 3.1. The equation can be expressed as follows (Chan, 1981): 
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where m and k are known states of the geologic parameter X at two observation 

locations (e.g. boreholes) 1it −  and it  ( 1i it t − ), respectively. The location t is an 

arbitrary unknown point between these two observation locations 1it −  and it , whose 

state of the parameter X is j.  

 

Figure 3.1 Interpolation of the parameter state probability at an unknown location. 

As seen in Figure 3.1, the state probability of geologic parameter X at location t 

can be interpolated given the state probabilities at two observation locations 1it −  and it

according to Eq. (3.5). The calculation procedure can also be similarly applied to the 

interpolation of cells between other adjacent boreholes. Thus, the probabilistic state 

profile of this geologic parameter could be calculated at any cells along the tunnel 

alignment. Analogously, the probabilistic profile of other parameters can also be 

obtained. By integrating these probabilistic profiles of all the parameters, the 

probabilistic profile of rock mass classification can be derived accordingly. More 

detailed explanations about the Markovian geological prediction approach are available 

in reference papers (Chan, 1981; Ioannou, 1987). 

3.3.2 Probabilistic rock mass classification based on Q-system 

In the Markovian geological prediction approach in Section 3.3.1, location-specific 

information (e.g., exploratory borehole data) can be incorporated to predict the state 

probability of geological parameters. The observation results of the geological 

parameter states can be nondeterministic, e.g. because of imperfect exploration. In the 
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Q-system, the likelihood matrix of Q-parameters using a particular exploration method 

(e.g., subsurface borehole and face logging) at a certain location can be defined as: 

( ) [ ( )];jk b jk bL t l t=  ( ) [ ( ) | ( ) ]jk b b bl t P Y t k X t j= = =    (3.6) 

where Y(tb) is the observation result of a Q-parameter state at location tb; X(tb) is the 

true state of a Q-parameter at location tb; ( )jk bl t  is the likelihood (or reliability) of the 

observation result k given that the true state of a Q-parameter is j at location tb, and 

( )jk bL t  is the likelihood matrix of a Q-parameter at location tb. 

The likelihood matrix of each Q-parameter is estimated by on-site engineering 

geologists, which relies on the reliability of the exploration data or the experts’ 

judgment. In practice, the likelihood matrix can vary due to the particular combination 

of exploration methods and geologic parameters. The likelihood matrix is also a 

function of location; however, for the purpose of simplicity, it is often assumed to be 

constant. 

3.3.3 Implementation procedures of the proposed model  

The implementation procedures of the proposed model can be described as follows: 

(1) Adapt state definitions, descriptions and ratings of Q-parameters to an individual 

project.  

The state definitions, descriptions and ratings of the Q-parameters have been 

modified from Barton (2002) to individual project characteristics to establish transition 

matrices of input parameters, as shown in Appendix A. For example, in cases where 

squeezing and swelling are not expected to occur, SRF states characterizing these two 

categorical features might not be included in the transition matrix for the parameter 

SRF. 

(2) Estimate the transition probability Pij and transition intensity coefficient ci. 

The transition probability Pij and transition intensity coefficient ci of each Q-

parameter state are used to construct the transition matrix, which was the input for the 

Markovian prediction model. These parameters could be determined by the statistical 

frequency calculation if sufficient geologic data is available in the project area, by 
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subjective judgment from on-site engineering geologists based on limited available data 

or by a combination of both. 

(3) Evaluate observation results and the likelihood of Q-parameters at particular 

locations. 

The observed state of Q-parameters can be evaluated by experienced experts at 

particular locations. The likelihood of Q-parameter states, which reflects the experts’ 

confidence level, can also be assessed by on-site engineering geologists. 

(4) Interpolate the state probability of Q-parameters between particular observation 

locations. 

Based on Eq. (3.5), the state probability of Q-parameters can be interpolated 

between two adjacent observation locations given the probabilistic descriptions 

obtained from Step (3) at these known observation locations. If we repeat this procedure 

to interpolate the state probability of the Q-parameters at all adjacent observation 

locations, then the probabilistic profile for Q-parameter states can be derived along the 

entire tunnel alignment.  

(5) Integrate probabilities of Q-parameters to obtain the probability distribution of the 

Q value.  

Based on the Q-equation in Eq. (2.1), if we integrate the state probabilities of all 

Q-parameters using the MCS technique at arbitrary locations, the probability 

distribution of the Q value can be obtained. If we repeat this procedure at other locations 

along the alignment, the probability distribution of the Q value can be generated along 

the tunnel axis. 

3.3.4 Application to a case study 

A water tunnel in western Canada, was selected for application of the proposed Q-

based prediction model. The tunnel is 7.2 km in length and located predominantly 

within quartz diorite and granodiorite, with overburden varying from 185 m to 650 m. 

It was excavated by an open-type hard rock tunneling boring machine with the diameter 

of 3.8 m. The geological profile map is shown in Figure 3.2. In this case study, a tunnel 

section with relatively homogeneous ground condition in quartz diorite formation with 
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1000 m length (from Chainage +1610 to +2610 m) was selected. The layout of the 

tunnel section is illustrated in Figure 3.3. Actually, the entire tunnel section in Figure 

3.3 has been excavated and the tunnel mapping data has been recorded. Due to the 

limited availability of site investigation borehole data in this section, mapping data 

collected during tunnel construction have been used for implementation and validation 

of the proposed model. In this study, as can be seen in Figure 3.3, this section was 

divided into two subsections: Subsection 1 with 400 m in length from Chainage +1610 

to +2010 m and Subsection 2 with about 600 m length from Chainage +2010 to + 2610 

m. Subsection 1 has been excavated and known exactly while Subsection 2 was 

assumed to be unknown except for 13 observation cells (OCs). 

 

Figure 3.2 Geological profile of the tunnel project. 

Due to the stationarity of rock mass conditions in the entire tunnel section, the 

transition intensity matrices of Q-parameters can be treated as constant. Thus, the 

actually recorded data set of the Q-system in Subsection 1 with 400 m in length was 

used as input for establishing the transition matrix of the prediction model, while 

Subsection 2 was used for testing the prediction performance by comparing the 

predicted Q-results with the actually recorded ones in Subsection 2. In practice, the Q-

log mapping was performed every 5 m during construction in this tunnel section, and a 

single numerical value was assigned to each Q-parameter and the overall Q value. For 

the convenience of comparison between predicted and actually recorded Q results, 

Subsection 2 was subdivided into cells with 5 m length for each cell. The total length 
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of Subsection 2 is 605 m and thus 121 cells are obtained with 13 OCs. The OC 1 is at 

Chainage +2010~2015 m, which is the starting cell in Subsection 2. This cell was 

considered as the reference starting point for the subsequent prediction. In other words, 

OC 1 is the starting Cell 1 while OC 13 is Cell 61 in Subsection 2. 

To investigate the effects of the input data, i.e. Q data in Subsection 1, on the 

prediction performance, two additional scenarios, including the Subsection 1 with 200 

m (Chainage +1610~1810 m) and 300 m (Chainage +1610~1910 m), have also been 

conducted. The Subsection 2 with 600 m (Chainage +2010~2610) is used as the test 

subsection to verify the prediction performance with input data obtained from 

Subsection 1 with different length (200 m, 300 m and 400 m). The following section in 

this chapter focuses on the results derived from the scenario with Subsection 1 of 400 

m. The main results for the other two scenarios with Subsection 1 of 200 m and 300 m 

are listed in Appendix D. 

 

Figure 3.3 Layout of observation cells in this tunnel section. 

3.4 Results and discussion 

3.4.1 Probabilistic profiles of Q-system 

Probabilistic Profile of States of Q-parameters 

The state definitions, descriptions and ratings for Q-parameters in this case 

study are shown in Appendix A. Note that SRF states for squeezing and swelling rocks 

are not included in Appendix A since these scenarios are not expected to be encountered 
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in the case study. The transition intensity matrices of Q-parameters were calculated 

based on state transition frequency calculations of Q-parameters in Subsection 1, as 

shown in Appendix B. The observed states for Q-parameters at observation cells are 

shown in Table 3.1. The likelihood matrices for Q-parameters are demonstrated in 

Appendix C. Combining the observed states at observation cells and the likelihood of 

Q-parameter states, the imperfect observation results are described probabilistically at 

these observation cells. Since the states for Q-parameters are discrete, the occurrence 

probabilities of states for Q-parameters are, in fact, in form of probability mass 

functions (PMFs). Based on the transition intensity matrices of Q-parameters and the 

probabilistic descriptions of Q-parameter states at these observation cells, the 

probabilistic state profile for each Q-parameter was predicted along the tunnel axis. 

This calculation process in the prediction model was coded and performed using 

MATLAB sotfware based on Eq. (3.5). The obtained probabilistic state profiles of Q-

parameters (RQD, Jn, Jr, Ja, Jw and SRF) are shown in Figure 3.4, respectively.  As seen 

in Figure 3.4, greater variations in parameters Jn and RQD were observed while the 

predicted probability profiles for other Q-parameters (Jr, Ja, Jw and SRF) in Subsection 

2 are more stable. 

Table 3.1 Observation cell locations and observed states. 

No. of 

cell 

Chainage 

(m) 

Distance 

(m) 

Observed states 

RQD Jn Jr Ja Jw SRF 

1 2010 0 4 5 4 3 1 5 

2 2060 50 3 5 4 3 1 5 

3 2110 100 3 5 4 3 1 5 

4 2160 150 3 5 4 3 1 5 

5 2210 200 3 5 4 3 1 5 

6 2260 250 4 3 4 3 1 5 

7 2310 300 4 5 4 3 1 5 

8 2360 350 4 3 4 3 1 5 

9 2410 400 4 5 5 3 1 5 

10 2460 450 4 4 4 2 1 5 

11 2510 500 4 3 4 3 1 5 

12 2560 550 4 3 4 3 1 5 

13 2610 600 4 3 4 3 1 5 
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Figure 3.4 Predicted probabilistic state profiles of Q-parameters in Subsection 2: (A) 

RQD; (B) Jn; (C) Jr; (D) Ja; (E) Jw; (F) SRF 
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Probabilistic distribution of Q value 

As the PMF of Q-parameter states has been obtained, the resultant PDF of the 

overall Q value can be calculated using the MCS technique according to Eq. (2.1). In 

this case study, the MCS simulation was carried out with 10,000 iterations using the 

@RISK software. Figure 3.5 illustrates an example of the obtained PDF and cumulative 

distribution function (CDF) of the Q value at OC 3 (distance 100-105 m). Results also 

shows that lognormal distribution is the best fit for the simulated distribution based on 

the Bayesian Information Criterion (BIC). The BIC is calculated from the log-

likelihood function and takes into account the number of parameters of the fitted 

distribution, and it is recommended for the distribution fit (Palisade Corporation, 2016). 

The comparison of statistics for the Q value between the simulated distribution and 

fitted lognormal distribution is also shown in Figure 3.5. Analogously, the statistical 

distribution of the Q value can also be derived at other cells, and thereby the 

probabilistic distribution of Q value can be obtained at any locations along the tunnel 

alignment. 

 

Figure 3.5 An example of the statistical distribution of MCS-simulated Q value at OC 

3 (distance 100-105 m). 

Probabilistic Profile of Q-based rock class 
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Given the statistical distribution of Q value, as shown in Figure 3.5, the relative 

percentage of Q-based rock class (RC) can be obtained at that cell. According to the Q-

based rock mass classification (Barton et al. 1974), RC 1–3 herein represent “good” 

rock, “fair” rock and “poor” rock with Q values in the ranges of 10–40, 4–10, 1–4, 

respectively. The probability profile of Q-based rock classes has been obtained along 

the tunnel section, as illustrated in Figure 3.6. At the beginning of Subsection 2, the 

leading rock class is RC1 with “good” rock for about 20 m before its transition to RC2 

with “fair” rock. The RC2 dominates for about 200 m before its transition to RC1 at the 

distance about 220 m, consistent with the changes of RQD and Jn to better quality rock 

mass. After that, RC1 is mostly likely again for the remaining 380 m except locally 

where RC2 is most likely at the distance of 400 m. 

 

Figure 3.6 Predicted probability profile of Q-based rock classes in Subsection 2. 

3.4.2 Comparison between predicted results and field observations 

The Q-log mapping data has been actually collected during construction, and this 

type of data set was used to compare with predicted results of the Q value for the 

validation of the proposed prediction model. Since the ratings for each Q-parameter and 

the overall Q value were recorded in each cell during tunnel mapping, the validation 
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can be performed by comparing predicted Q-parameter states, Q values and Q-based 

rock classes with those actually collected during tunnel construction. 

Comparison criterion of Q-parameter states 

To test predicted results of Q-parameter states, the accuracy plot has been used. 

In the accuracy plot for predicted Q-parameter states, the horizontal axis indicates the 

probability interval of predicted mostly likely outcome for each Q-parameter, which 

can be obtained in Figure 3.4. The vertical axis means the proportion of the actually 

recorded results in this interval in all cells of the Subsection 2. A perfect prediction 

corresponds to the 1:1 line in the accuracy plot. Figure 3.7 and Figure 3.8 illustrate the 

accuracy plots for the predicted RQD and Jn in Subsection 2, respectively. The 

probability interval is in unit of 10% in this case. Take the accuracy plot of RQD as an 

example, in the interval of 0.8~0.9, the middle value of 0.85 is used. The number of 

cells in which the predicted modal probabilities are in this interval of 0.8~0.9 is 79 in 

Subsection, as obtained in the predicted probability profile of RQD in Figure 3.4. Based 

on the actually recorded RQD states in Subsection 2, there are 66 out of 79 cells where 

the predicted modal outcomes correspond to the actually mapped states, giving the 

proportion of true states about 84% in this interval of 0.8~0.9. The calculated proportion 

value in certain probability interval reflects the actual prediction correctness in this 

probability interval. Similarly, the proportion values in other probability intervals for 

the predicted RQD and for other Q-parameters were also derived and the accuracy plots 

have been obtained for Q-parameters. 

The measures of prediction accuracy, including the RMSE (Root Mean Square 

Error) and R2 (coefficient of determination), have also been derived in the accuracy 

plots. It can be seen in Figure 3.7 and Figure 3.8 that R2 values for both predicted RQD 

and Jn are above 0.8 and RMSE values are around 0.1, indicating the relatively good 

prediction performance. As can be seen in Figure 3.4, there are greater variations in the 

predicted probability profiles for RQD and Jn while a certain state is dominant in the 

majority of Subsection 2 for other Q-parameters (Jr, Ja, Jw and SRF). Actually recorded 

results also reveal that the mapped state results for RQD and Jn are more variable than 
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other Q-parameters in Subsection 2. The dominance of a certain state for other Q-

parameters (Jr, Ja, Jw and SRF) is also observed in the actually recorded data during 

tunnel mapping, indicating the relatively high prediction accuracy for these parameters. 

Thus, the prediction accuracy of the proposed prediction model is relatively high based 

on the comparison criterion of Q-parameter states. 

 

Figure 3.7 Accuracy plot for predicted RQD 

 

Figure 3.8 Accuracy plot for predicted Jn 

Comparison criterion of the Q value 

 Different to the Q-parameters that are categorical variables, the Q-value is a 

continuous variable, and the accuracy plot has been made using the symmetric intervals 
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centered on the cumulative distribution function median (Goovaerts, 2001). A series of 

symmetric p-probability intervals (percentiles 0.1 to 1.0 in increments of 0.1) bounded 

by the (1-p)/2 and (1+p)/2 are used to construct the accuracy plot (Goovaerts, 2001). 

An indicator function is used to assign a value of 1 if the true value falls within the 

probability interval in a test location and 0 if the true values falls outside of the 

probability interval. For example, if the p-probability is 0.5, the corresponding 

probability interval is 0.25~0.75. The number of true Q values falling within the 0.5-

probability interval of the Q value, i.e. 0.25~0.75, can be calculated at each cell in 

Subsection 2, and the proportion of true Q values in this probability interval can 

accordingly derived. For a prediction model with high prediction accuracy, the 

proportion in the probability interval should be close to the p in the accuracy plot. 

The accuracy plot for the predicted Q value is shown in Figure 3.9. The derived 

accuracy plot is very close the 1:1 line. The obtained R2 is at a very high value of 0.99 

and the calculated RMSE is as low as 0.04. This indicates that the prediction accuracy 

is very high for the proposed prediction model based on the comparison criterion of the 

Q value. 

 

Figure 3.9 Accuracy plot for predicted Q value 

Comparison criterion of Q-based rock class 
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As with Q-parameters, the accuracy plot for the Q-based rock class has also 

been obtained by comparing the predicted probability interval for modal outcome with 

the proportion of true states in that interval, as shown in Figure 3.10. The obtained R2 

value is 0.92 and RMSE value is 0.07, indicating the relatively high prediction accuracy 

of the proposed prediction model based on the comparison criterion of Q-based rock 

class. 

 

Figure 3.10 Accuracy plot for predicted Q-based rock class 

In addition, the accuracy plots for individual rock class have also been made. As can be 

seen in Figure 3.6, GC1 with “good” rock and GC2 with “fair” rock are dominant in 

Subsection 2, and the accuracy plots have been generated for these two dominant rock 

classes. Figure 3.11 illustrates the accuracy plots for GC1 and GC2, respectively. Both 

plots reveal the relatively high prediction accuracy for individual rock class, which 

agrees well with that derived from the accuracy plot for the predicted overall Q-based 

rock class shown in Figure 3.10. 

Discussion on the validation of the proposed prediction model 

The proposed Q-based prediction model has been validated by comparing predicted Q-

parameter states, Q values and Q-based rock classes with observed values. By contrast, 

with regard to the ground classification-based prediction model, the model validation 

was carried out by comparing the predicted ground class that had the maximum 
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probability with the real on-site ground class (Guan et al., 2014; Guan et al., 2012; Leu 

and Adi, 2011). For commonly used rock mass classification systems, comparisons 

between the predicted and actual rock class, based on RMR and Q-system, have been 

used to test the accuracy of the rock mass classification prediction model (Panthi and 

Nilsen, 2007; Ravnjak et al., 2014). However, these validation processes were based on 

comparisons of overall rock mass quality described by the ground class, RMR or Q- 

 

 

Figure 3.11 Accuracy plot for predicted ground classes: (A) GC1; (B) GC2 

based rock class. As the Q-system is a quantitative rock mass classification with 

numerical ratings for each input parameter, the prediction model can also be validated 

by comparing its input parameter states and the overall Q values between the predicted 

and actual recorded results in addition to the comparison of rock classes. Thus, the 
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proposed Q-based prediction model, in this study, provides a means in a more 

comprehensive way to compare the predicted and actual results for validation purpose. 

In addition, the probabilistic prediction results have been evaluated in a 

probabilistic framework using the accuracy plot. In the ground class-based prediction 

model proposed by (Guan et al., 2014; Guan et al., 2012; Leu and Adi, 2011), the 

probabilistic predictions of ground class or geology class were directly compared to 

deterministic ground-truth data. If the predicted dominant ground class matches the 

actual one at one location, then the prediction is considered accurate at that location. In 

other words, the probabilistic predictions were evaluated in a deterministic way and the 

uncertainties in the predicted probabilistic model are not explicitly quantified. The 

accuracy plot used in this study can address this issue, and characterize the uncertainties 

and prediction accuracy of the proposed probabilistic prediction in a probabilistic way. 

3.4.3 Sensitivity analysis 

Different sensitivity analysis techniques can be used to determine the sensitivity of 

the output parameter to its input parameters, including one at a time sensitivity analysis, 

differential sensitivity analysis, factorial design, importance factors and the sensitivity 

index (Hamby 1994). Probabilistic sensitivity analysis can be performed in the MCS 

process to determine the relative importance of input parameters in the Q-system using 

the @RISK software. The tornado graphs generated from the MCS process show the 

ranking of relative importance of the input distributions. Input parameters that have the 

longest bars in the graph indicate that input distribution has greatest impact on the 

output distribution. 

Sensitivity analysis at one cell 

Figure 3.12 illustrates the relative importance for Q-parameters in OC 3 in 

tornado graphs ranked by 4 different criteria: i.e. the effect on output mean, the 

regression coefficient, the Spearman correlation coefficient and the contribution to 

output variance, respectively. As seen in Figure 3.12, the rank of relative importance 

for Q-parameters is different based on different ranking techniques. However, all the 

tornado graphs indicate, in general, Jr, Ja and RQD are the most influential input 
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parameters while Jn, SRF and Jw are less significant. This is related to the state 

probability assigned for each Q-parameter in OC 3. 

  

  

Figure 3.12 Rank of relative importance of Q-parameters at OC 3. (A) ranked by 

effect on output mean; (B) ranked by regression coefficient; (C) ranked by Spearman 

correlation coefficient; (D) ranked by contribution to variance 

Sensitivity analysis in Subsection 2 

The Q-parameter logging data has been collected during tunnel construction, and 

the relative frequency histograms for these Q-parameters can be obtained in Subsection 

2, as shown in Figure 3.16. The distribution of the Q value can also be derived using 

the MCS technique based on statistical distributions of actually recorded Q-parameter 

data based on the Q-equation Eq. (2.1). Figure 3.14 shows the obtained distribution of 

Monte Carlo-simulated Q value and its best fit in Subsection 2. The distribution of 

simulated Q value is also well described by a lognormal distribution. On the other hand, 

the statistical distribution of the actually recorded Q value data during construction is 

also obtained in Subsection 2, as shown in Figure 3.15. By comparing Figure 3.14 and 

Figure 3.15, it is seen that statistics of MCS-derived Q value (mean of 12.96, standard 

deviation of 6.78) are close to those of the actually recorded Q values (mean of 13.34, 
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standard deviation of 7.10), indicating the effectiveness of the MCS technique in 

characterizing uncertainty propagation from input parameters to the output. In addition, 

the relative percentage of Q-based rock class was also compared for simulated and 

actually recorded results, as illustrated in Figure 3.16. In general, the simulated and 

actually recorded Q-based rock class results agree well with each other. It is also found 

that “good” and “fair” rocks are dominant, covering more than 95% in total, for both 

simulated and actually recorded Q-based rock classes. Thus, the MCS-derived rock 

class percentage can also provide preliminary estimation of the overall rock mass 

quality in the tunnel section before excavation. 

 

Figure 3.13 Relative frequency histogram collected in Subsection 2: (A) RQD; (B) Jn; 

(C) Jr; (D) Ja; (E) Jw; (F) SRF 
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Figure 3.14 Statistical distribution of MCS-derived Q value in Subsection 2. 

 

Figure 3.15 Statistical distribution of actually recorded Q value in Subsection 2. 

 

Figure 3.16 Comparison of rock class distribution between simulated and actual 

results in Subsection 2. 
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Sensitivity analysis has also been carried out on the statistical distribution of 

Monte Carlo simulated Q value in Subsection 2. Figure 3.17 depicts the tornado graphs 

displaying the rank of relative importance for Q-parameters in Subsection 2. The 

sensitivity analysis results show that Jn, RQD and Ja are more significant than other 

input parameters in this case study. Parameters Jn and RQD are most influential, 

indicating greater uncertainties in distributions of these two input parameters, and this 

also corresponds to the observed greater variations in the predicted probabilistic profile 

of these two parameters in Figure 3.4. As can be seen in Figure 3.13, the histograms for 

RQD and Jn are more dispersed than other Q-parameters, indicating greater variabilities. 

Note that the more importance of the RQD and Jn in the sensitivity results is valid in 

this case study of the water tunnel project. The rank of relative importance for Q-

parameters can be different based on individual characteristics for different projects. 

However, the sensitivity analysis in the MCS process provides a feasible method to 

examine the impact of uncertainties in input distributions on the output Q value based 

on different ranking criteria in a probabilistic way.  

  

  

Figure 3.17 Rank of relative importance of Q-parameters in Subsection 2: (A) ranked 

by effect on output mean; (B) ranked by regression coefficient; (C) ranked by 

Spearman correlation efficient; (D) ranked by contribution to variance 
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3.4.4 Analytical calculation approach to deriving statistics of Q value 

Analytical approximation on statistics of Q value 

The statistics of a product of several input parameters, including the mean, 

standard deviation and coefficient of variation (COV), can be approximated using 

Taylor expansions given those statistics of input parameters (Elandt-Johnson and 

Johnson, 1980). Since the Q value is the product of three quotients as shown in the Q-

equation in Eq. (2.1), statistics of the Q value can be accordingly calculated given 

statistics of Q-parameters. In this section, an analytical approximate calculation 

approach to deriving statistics of the Q value is proposed accounting for the 

uncertainties in Q-parameters, and the derivation procedures are shown in Appendix E 

in detail. It should be noted that for the derivation COV of Q value, it can either be 

calculated as the ratio of standard deviation to the mean of obtained Q value by 

definition, or derived through the COV of Q-parameters. For the simplicity of 

calculation, all the Q-parameters are assumed to be independent in this derivation 

process. 

Comparison between analytical and simulated Q value 

The relative frequency histogram for each Q-parameter has been obtained at 

each cell in the tunnel section, and statistics for each Q-parameter has also been 

obtained using the @RISK software. Given the statistics of Q-parameters, the statistics 

of the Q value can be approximated using the developed analytical calculation approach. 

Table 3.2 compares statistics of the Q value among analytical, Monte Carlo-simulated 

and actually recorded results in OC 3 and Subsection 2, respectively. The Q-equation 

approach in the analytical solution is also included, in which the mean of Q value was 

calculated directly based on the Q-equation in Eq. (2.1) with the mean of each Q-

parameter as the only input. In this Q-equation approach, only the mean value rather 

than the standard deviation and COV of the Q value is calculated since the dispersion 

(e.g. SD and COV) of Q-parameters is not considered. In contrast, in the proposed 

calculation approach, the standard deviation and COV of Q-parameters are taken into 
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account, and statistics (mean, SD and COV) of the Q value have also been derived 

accordingly.  

Table 3.2 Comparison of Q statistics among analytical, simulated and actual results. 

Area Solutions 

Statistics of the Q value 

Mean SD 

COV 

Calculated 

by 

definition 

Calculated 

through 

COV of Q-

parameters 

Subsection 

2 

Analytical 

solution 

Q-equation 

approach 
10.71 N/A N/A 

Proposed 

calculation 

approach 

13.21 6.64 0.50 0.51 

MCS 

solution 

2,000 

iterations 
12.93 6.71 0.52 

5,000 

iterations 
12.94 6.74 0.52 

10,000 

iterations 
12.95 6.77 0.52 

20,000 

iterations 
12.95 6.78 0.52 

30,000 

iterations 
12.99 6.84 0.53 

Actually recorded Q value 13.34 7.10 0.53 

OC 3 

(distance 

100~105 

m) 

Analytical 

solution 

Q-equation 

approach 
7.04 N/A N/A 

Proposed 

calculation 

approach 

8.20 3.96 0.48 0.55 

MCS 

solution 

3,000 

iterations 
7.73 3.57 0.46 

5,000 

iterations 
7.74 3.59 0.46 

10,000 

iterations 
7.74 3.60 0.46 

20,000 

iterations 
7.74 3.61 0.47 

30,000 

iterations 
7.75 3.65 0.47 

Actually recorded Q value 8.75 N/A N/A 

Note that only a single value was given for the rating of the Q value during 

tunnel mapping at OC 3, thus the standard deviation and COV are not applicable for 

actually recorded results at OC 3. As can be seen in Table 3.2, the analytical, MCS-
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simulated and actually recorded results in terms of the mean, standard deviation and 

COV of the Q value are, in general, close in both OC 3 and Subsection 2. The generated 

statistics in analytical and simulated solutions are smaller than that in actually recorded 

results, but the differences are insignificant. With regard to the analytical solution, the 

obtained mean value in the proposed calculation approach (13.21) is closer to the 

recorded value (13.34) than that derived from the Q-equation approach (10.71) in 

Subsection 2. In addition, the measure of variations (SD and COV) for the estimated Q 

value can also be obtained in the proposed calculation approach, as shown in Table 3.2. 

In terms of the MCS solution, it is seen that greater mean and dispersion of the Q value 

are obtained with increased iterations. However, the differences are also limited, 

meaning the effect of iteration runs on simulated results is insignificant in this case 

study.  

As mentioned above, the results derived from the proposed calculation approach 

were close to MCS-simulated and actually recorded results in OC 3. This analytical 

approximation procedures can also be performed at other cells in Subsection 2. The 

analytical approximation process has been carried out at all cells in Subsection 2.  

Figure 3.18 shows the comparison of derived mean and standard deviation of Q 

values between analytical and simulated results (3,000 iterations) in Subsection 2. The 

comparison of COV for Q values is illustrated in Figure 3.19. It is shown that the 

analytical means of Q values are very close to those of simulated ones along the section. 

Compared to the mean values, the standard deviation and COV have greater variations 

between analytical and simulated results. The analytical calculation results reveal less 

dispersion in the Q value than the MCS-derived results. The relative difference of 

statistics of the Q value between analytical and simulated results along Subsection 2 is 

demonstrated in Figure 3.20. The relative difference is calculated as the absolute 

difference between the analytical and simulated Q statistics divided by the analytical 

values. It is seen that the relative difference of the mean is low between the analytical 

and simulated results along Subsection 2 with the maximum value around 5%. In 

contrast, the relative difference values for SD and COV are higher with the majority of 
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values below 10% and the maximum values around 20% locally. Overall, the 

differences of standard deviation and COV results derived from the analytical 

approximation and the MCS solutions are insignificant. 

 

Figure 3.18 Comparison of the mean and standard deviation of Q values between 

analytical and simulated results along Subsection 2. 

 

Figure 3.19 Comparison of COV of Q values between analytical and simulated results 

along Subsection 2. 

Discussion on the comparison between analytical and simulated Q value  
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Results show that the proposed analytical approximate calculation approach provides a 

higher accuracy than that of the Q-equation approach in the analytical solution. This is 

because the dispersion (SD and COV) of Q-parameters is taken into consideration in 

addition to the mean value in the proposed calculation approach. As shown in the 

derivation of the statistics of the Q value in Appendix E, the degree of uncertainty 

expressed by the standard deviation and COV of the Q value, in addition to the mean 

value, also has effects on the statistics of the Q value. The dispersion parameters of the 

Q value derived from the proposed calculation approach are very useful in probabilistic 

analysis and reliability evaluation for a geostructure design (Fenton and Griffiths, 2008; 

Hoek, 2007). Thus, the proposed analytical calculation reflects the actual uncertainty 

or variability of the rock mass quality with the dispersion or uncertainty of the Q value. 

 

Figure 3.20 Relative difference of Q statistics between analytical and simulated 

results along Subsection 2 

The statistics of the Q value derived from the analytical calculation and the MCS 

simulation are smaller than the actual recorded ones. This underestimation may be due 

to the approximation process caused by Taylor expansion for the analytical calculation 

and the Monte Carlo sampling from input distributions for the simulated results. 

However, in general, the differences among the analytical, simulated, and recorded 

results are insignificant. Thus, the accuracy of the estimated results using the proposed 
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analytical calculation approach and the MCS technique has been validated by the 

actually recorded Q value. The MCS technique is capable of providing a complete 

probability distribution of the estimated Q value and associated statistics, and its 

advantage in describing the uncertainty propagation in rock mass classifications has 

also been reported in literature (Bedi, 2014; Cai, 2011; Panthi, 2006; Sari, 2009; Sari et 

al., 2010). Thus, the MCS technique can be helpful in providing good estimates of the 

actual rock mass quality and associated uncertainties in the tunnel section before 

construction. 

3.4.5 Effects of the correlation between Q-parameters on Q value 

Correlation between RQD and Jn 

A correlation between RQD and volumetric joint frequency v  was reported by 

Palmstrom (2005), and can be described as: 

110 2.5RQD v= −   (4 44)v    (3.7) 

The volumetric joint frequency v  can be expressed as (Palmstrom and Stille, 2010): 
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where si is the mean joint set spacing in meters of the ith joint set; N is the total number 

of joint sets; and Nr is the number of random joints. 

 It is seen that RQD is negatively correlated to the volumetric joint frequency v  

from Eq. (3.7) and that v  is positively correlated to the total number of joint sets N 

from Eq. (3.8). Combining these two equations, it is obtained that RQD is negatively 

correlated to the number of joint sets N, which is consistent with the rating of Jn in Q-

system. Therefore, it is concluded that RQD is negatively correlated to Jn. 

Effects of correlation between RQD and Jn on Q value 

The effects of correlation coefficients between RQD and Jn on the Q value in OC 

3 and Subsection 2 are shown in Table 3.3. It is shown that the stronger the negative 

correlation between RQD and Jn, the larger the statistics (mean, standard deviation and 

COV) of the Q value. This reveals that the variation in the Q value may be under-

estimated if the correlation is not modeled. The statistics of actually recorded Q value 
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in Subsection 2 are also listed in Table 3.3 for comparison. It is found that the statistics 

of actually recorded Q value (mean of 13.34, SD of 7.10, COV of 0.53) are within the 

range of Q statistics derived from simulated results with different correlation 

coefficients (from 0 to -1). In contrast, the scenario in OC 3 is different. The recorded 

Q value is larger than any simulated mean of Q values considering different correlation 

coefficients. This may be due to the smaller variations in parameters RQD and Jn in OC 

3, as can be shown in Figure 3.4.  

Table 3.3 Effect of correlation between RQD and Jn on statistics of Q value. 

Area 
Correlation coefficient 

between RQD and Jn 

Statistics of Q value 

Mean 
Standard 

Deviation 

Coefficient of 

Variation 

(COV) 

Subsection 

2 

-1 13.62 8.29 0.61 

-0.75 13.43 7.85 0.58 

-0.5 13.26 7.45 0.56 

-0.25 13.10 7.15 0.55 

0 12.95 6.77 0.52 

Actually recorded Q 

value 
13.34 7.10 0.53 

OC 3 

(distance 

100~105 

m) 

-1 7.87 4.08 0.52 

-0.75 7.83 3.94 0.50 

-0.5 7.81 3.81 0.49 

-0.25 7.76 3.71 0.48 

0 7.75 3.62 0.47 

Actually recorded Q 

value 
8.75 N/A N/A 

3.4.6 Effects of distribution types of Q-parameters on Q value 

Distribution pattern of Q-parameters 

Based on a number of on-site collected data of Q-parameters, statistical 

distributions of these Q-parameters can be obtained and fitted with certain probability 

distribution models. Table 3.4 summarizes probability distribution models of Q-

parameters in literature based on various research and case studies. In this case study, 

the RQD parameter is relatively important based on the sensitivity analysis results and 

can be well fitted by a continuous probability distribution. Thus, the parameter RQD is 
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taken as an example, and the effect of RQD distribution on the Q value has been 

investigated. As seen in Table 3.4, RQD can be characterized in form of a normal, 

lognormal, exponential, or triangular distribution in the MCS process.  

Table 3.4 Summary of distribution of Q-parameters. 

Q-

parameter 

Distribution 

patterns 
Literature  

RQD 

Exponential 

distribution 

Şen and Kazi 1984; Tavakoli and Ranjbar 2004; 

Onsel et al. 2011;Esfahani and Asghari 2013 

Normal 

distribution  
Panthi 2006; Şen 2016 

Lognormal 

distribution  

Wines and Lilly 2001; Panthi 2006; Onsel et al. 

2011 

Triangular 

distribution  
Bedi 2013 

Jn 
Triangular 

distribution  
Panthi 2006; Panthi and Nilsen 2010 

Jr 

Normal 

distribution 

Beer et al. 2002; Panthi 2006; Andrade and Saraiva 

2008; Panthi and Nilsen 2010; Cai 2011 

Lognormal 

distribution  
Panthi 2006 

Triangular 

distribution  
Bedi 2013 

Ja 

Normal 

distribution 
Panthi 2006; Panthi and Nilsen 2010; Cai 2011 

 Lognormal 

distribution 
Panthi 2006 

Triangular 

distribution  
Bedi 2013 

Jw 
Triangular 

distribution 
Panthi 2006 

SRF 
Triangular 

distribution 
Panthi 2006 

The recorded RQD data from tunnel mapping, and the statistical distribution can 

be described in form of a histogram with statistics estimated using the @RISK software. 

These statistics, including min, mode, mean, max and standard deviation, derived from 

the histogram can be used to define probability distribution models under different 

assumptions. To investigate the effect of distribution pattern of RQD on statistics of Q 

value, the normal, lognormal, exponential and triangular distributions, were adopted 

based on summarized RQD distribution types in Table 3.4 in comparison to the actual 
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relative frequency histogram. Meanwhile, relative frequency histograms for other Q-

parameters are also used in the MCS process. To be more specific, in the scenario of 

Subsection 2, the relative frequency histograms based on actually collected data are 

adopted for other Q-parameters in the MCS simulation. In the scenario for OC 3, the 

predicted PMFs for other Q-parameters using the proposed prediction model were used 

in the MCS simulation. The MCS simulations were performed with 10, 000 iterations 

using the @RISK software. 

Effects of distribution types of RQD on Q value 

Table 3.5 Comparison of Q value between simulated and actual results with different 

RQD distributions. 

Area 
Distribution pattern 

of RQD 

Statistics of Q value 

Mean 
Standard 

Deviation 

Coefficient of 

Variation 

(COV) 

Subsection 

2 

Histogram 12.96 6.78 0.52 

Normal distribution 12.76 6.54 0.51 

Lognormal 

distribution 
12.68 6.49 0.51 

Triangular 

distribution 
10.33 6.29 0.61 

Exponential 

distribution 
10.59 5.94 0.56 

Actually recorded Q 

value 
13.34 7.1 0.53 

OC 3 

(distance 

100~105 

m) 

Histogram 7.74 3.64 0.47 

Normal distribution 7.76 3.63 0.47 

Lognormal 

distribution 
7.72 3.55 0.46 

Triangular 

distribution 
7.12 3.86 0.54 

Exponential 

distribution 
6.81 3.94 0.58 

Actually recorded Q 

value 
8.75 N/A N/A 

Table 3.5 compares statistics of simulated Q value with different assumptions of 

RQD distribution patterns in both OC 3 and Subsection 2. The actually recorded Q 

value during tunnel mapping is also included for comparison. It is found that the 

simulated results with RQD histogram are closest to actual results in Subsection 2, 
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followed by those with normal distribution and lognormal distribution. This is because 

the RQD histogram was derived from the actually recorded RQD data in the tunnel 

section. The distribution fitting results also show that normal and lognormal 

distributions are good fits for the RQD histogram, and this is why simulated scenarios 

with these two distribution assumptions also generated close results to the actual results. 

The RQD histogram based on the actually recorded RQD data is shown in Figure 3.21 

with the normal distribution fit. By contrast, greater deviations were observed between 

actually recorded results and simulated ones with triangular and exponential 

distributions of RQD, indicating these two distribution types are not good fits in this 

case.  

In the scenario of OC 3, as shown in Table 3.5, similar results can be observed in 

the normal, lognormal and triangular distributions compared to the RQD histogram. 

This may be related with the characteristics of RQD histogram at OC 3. As can be seen 

in Figure 3.4, the probability for state 3 (RQD: 50~75) of RQD parameter is 90%, and 

the probability for state 2 (RQD: 25~50) and state 4 (75~100) are both 5% at the OC 3. 

Due to the single peak of state 2 in the RQD histogram at OC 3, the goodness-of-fit 

differences for normal, lognormal and triangular distributions are limited and thus 

similar results are generated using these distributions. 

 

Figure 3.21 Statistical distribution of actually recorded RQD data in Subsection 2 and 

normal distribution fit 
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3.4.7 Perspective of the study 

The proposed Q-based prediction model provides a framework for predicting rock 

mass quality using the Markov Chain technique in the planning and preliminary design 

stage of underground construction. The probability distributions of rock mass quality 

can be predicted along the tunnel alignment before tunnel excavation based on site 

investigation data, including the rock mass quality data in the regional area and 

location-specific exploration boreholes. Note that the availability of Q data in the tunnel 

area and boreholes are limited in this case study. In view of this, the Q data collected in 

Subsection 1 of the excavated tunnel section was used as the input for the prediction 

model, and Subsection 2 of the excavated tunnel section has been used as the test section, 

considering the ground stationarity of the selected tunnel section. The proposed 

probabilistic prediction model should also be applied to tunnel cases with Q data 

available from the tunnel area and boreholes in the site investigation stage to test 

prediction robustness. In addition, as reported by some researchers (Bieniawski, 1989; 

Palmstrom and Stille, 2010), it is recommended to use more than one rock mass 

classification (e.g. RMR, Q-system, GSI) in tunnel design for comparison. Thus, the 

extension of the probabilistic Q-based prediction model to other rock mass 

classification systems such as RMR and GSI should be incorporated into future work. 

Further, the proposed prediction model should be updated based on new rock mass 

quality data available during tunnel construction, and Bayesian updating technique or 

equivalent can be used. It should also be noted that the selected tunnel section from the 

water tunnel case study is in relatively stationary ground conditions. In a tunnel with 

heterogeneous and complex geologic conditions, the tunnel section can be divided into 

several relatively stationary subsections, and the Markov Chain-based prediction model 

can be implemented in relatively stationary subsections. The proposed prediction model 

should be applied to tunnel cases with more variable geologic conditions to test its 

prediction performance for further study. Nevertheless, the proposed prediction model 

enables the prediction of probabilistic distributions of rock mass quality along the 

tunnel alignment before construction with a relative high prediction accuracy in this 
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case study, thus providing a supplement to the geology exploration and prospecting in 

the planning and preliminary design stage of underground excavations.  

3.5 Conclusions 

The probabilistic distribution of rock mass quality Q index in the unexcavated 

tunnel sections has been predicted before excavation by a Q-based prediction model 

using the Markov chain technique. The proposed prediction model has been applied to 

selected sections of a water tunnel for the purpose of validation. The predicted 

probabilistic results of Q-parameter states, Q values and Q-based rock classes were 

compared with those recorded during tunnel construction. The average prediction 

accuracy for the predicted results was relatively high based on the accuracy plots in 

comparison to the actually recorded Q data, indicating the effectiveness of the proposed 

prediction model. 

In addition to Monte Carlo-simulated results, an analytical calculation approach 

for approximating the statistics of the Q value has also been developed given the 

statistics of Q-parameters. The statistics of Q values estimated from the analytical 

calculation approach were also compared to the MCS-derived and actually recorded Q 

results, and the comparability among these results was confirmed. 

Probabilistic sensitivity analysis was also carried out in the MCS process and 

the relative importance of Q-parameters was ranked in tornado graphs based on four 

different ranking criteria. All the ranking criteria show similar sensitivity results with 

Jn and RQD being most influential, in consistent with the greater variations in the 

predicted probabilistic profile of Jn and RQD compared to other Q-parameters.  

Moreover, the negative correlation between RQD and Jn has been presented, 

and the estimated mean and dispersion of the Q value would be underestimated if the 

correlation was neglected. The effects of distribution for RQD on the Q value have also 

been examined. The normal distribution was a good fit for the actually recorded RQD 

data in this case study, and the generated Q value under this normal assumption of RQD 

agreed well with the actually recorded Q results during tunnel construction. 
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The proposed Q-based prediction model is capable of quantitatively predicting 

rock mass quality in the unexcavated tunnel section using a probabilistic approach and 

can be used to complement geology exploration in the planning and preliminary design 

stages of tunnel projects. It can also be helpful in probabilistically evaluating excavation 

support strategies as well as the construction time and cost, thus contributing greatly to 

decision support for the tunnel design and construction.
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CHAPTER 4  

MONTE CARLO SIMULATION (MCS)-BASED UNCERTAINTY ANALYSIS OF ROCK 

MASS QUALITY Q IN UNDERGROUND CONSTRUCTION 

Modified from a paper published in Journal of Tunneling and Underground Space Technology  

Hui Lu, Eunhye Kim, Marte Gutierrez 

 

4.1 Abstract  

Uncertainty in rock mass quality as it pertains to tunnel design is due largely to the inherently 

heterogeneous nature of rock masses. Traditional deterministic methods for the assessment of rock 

mass quality are based on a limited understanding of this inherent uncertainty, which results in 

adverse effects on the overall design and possibly on the performance of the structure. To address 

this problem, a Monte Carlo simulation (MCS)-based uncertainty analysis framework is proposed 

to probabilistically quantify uncertainties in the rock mass quality assessment by the rock mass 

classification Q-system. The proposed framework has been successfully implemented in a 

highway tunnel case study. The probabilistic distribution of the Q value was obtained using the 

MCS technique with the relative frequency histograms of Q-parameters, which was then used to 

assess rock mass properties and responses with appropriate empirical correlations. The 

probabilistic estimates of rock mass properties were also adopted as the inputs for a finite element 

model for the probabilistic evaluation of excavation-induced tunnel displacement. In addition, the 

probabilistic sensitivity analysis was conducted in the MCS process to rank the relative importance 

of Q-parameters based on criteria of regression coefficients, Spearman’s rank-order correlation 

coefficients, contributions to variance and effects on output mean. The negative correlation 

between Rock Quality Designation (RQD) and Jn was also presented, and its effects on the Q value 

and associated rock mass parameters have been investigated. Moreover, the effects of the 

distribution types of uncertain input parameters in the Q-system have also been examined. The 

proposed framework is capable of systematically assessing the uncertainty in the rock mass quality 

measure before tunnel construction as well as providing insightful information for the probabilistic 

evaluation of the ground response and support performance of underground structures. 
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4.2 Introduction 

Rock mass classification systems have been widely used to provide a quantitative assessment 

of rock mass quality and guidelines for engineering design (Palmstrom and Stille, 2010). Empirical 

rock mass classification systems, including the rock mass rating (RMR), rock mass quality Q-

system, and geological strength index (GSI), have inherent uncertainties (Palmstrom and Stille, 

2007; Stille and Palmström, 2003). For example, in the Q-system, the joint characteristics, Jr, Ja 

and especially Jn, in addition to the RQD, are prone to mischaracterization (Palmstrom and Broch, 

2006). The traditional deterministic analysis methods, which are based on ground characterization 

and rock mass classification, disregard the inherent uncertainties in the rock mass itself and thus 

may cause conservative estimates to be used in the design and construction phases that inflate the 

costs of underground construction (Guan et al., 2014; Ioannou, 1987). 

The Q-log chart is commonly used to record the statistics of all the input parameters in the Q-

system for the field mapping of surface exposures, core logging or underground excavation 

logging (Barton, 2002). The mean, mode and the range interval of each input parameter are 

estimated based on the collected Q-log data, and these statistics for the overall Q value could be 

calculated using an interval analysis. However, Panthi (2006) reported that the mean and range 

values have poor statistical properties and are sensitive to extreme values. A Q-log example from 

a case study showed that the typical Q value range was 0.008–100 with a mean value of 4.44 

(Morelli, 2015). This cautious estimate of the range covers several rock classes, from exceptionally 

“poor” to “extremely good”, and the mean value indicates that the rock mass is “fair” on average. 

Bedi (2013) also reported that the lack of information on intervals could cause difficulty in 

decision-making, as exemplified by the wide range of the calculated Q interval. In addition, if the 

uncertainties and variabilities in the rock mass classifications are insufficiently characterized, they 

may propagate through the design process and have an adverse impact on the ground response and 

tunnel support performance (Baecher and Christian, 2003; Langford, 2013).  

However, probabilistic analysis, which encompasses the complete probability distribution of 

the rock mass parameters, is capable of adequately characterizing the uncertainties in rock mass 

conditions. The probabilistic rock mass quality can capture the intrinsic and subjective variability 

of the rock mass conditions and has a significant influence on the probabilistic design in 

underground construction (Cai, 2011). Once uncertainties in the Q-system are quantified 

probabilistically, probabilistic estimates of the rock mass properties can be made through a forward 
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uncertainty analysis based on the empirical relationships. The derived probabilistic rock mass 

properties can be used as the inputs for a probabilistic analyses using numerical modeling, in which 

the rock mass response and design performance can also be evaluated probabilistically. Sari (2009) 

developed the probability distributions of the RMR and GSI based on probabilistic descriptions of 

the discontinuities and intact rock properties using Monte Carlo simulation (MCS) and derived a 

probabilistic estimate of the rock mass strength and deformability properties. Cai (2011) analyzed 

GSI from probabilistic evaluations of the joint characteristics in field mapping and performed a 

probabilistic analysis of tunnel and cavern stability which considered the variability of the rock 

mass parameters and in situ stress. 

Similarly, Tiwari et al. (2017) estimated the rock mass parameters from the GSI in tunnel case 

studies and used them to assess the uncertainty in the yield zone and tunnel displacement. Idris et 

al. (2015) quantified the deformation modulus of a rock mass at the Laisvall mine based on the 

probabilistic distribution of GSI and adopted it to evaluate the pillar stability using numerical 

simulations. Bedi (2013) developed the probability density distribution (PDF) of the Q value in 

the Gjovik cavern using the MCS technique based on triangular PDFs of Q-parameters. 

However, no attempts in the past research have been made to consider the relative importance 

of the input parameters in the probabilistic Q-system. Additionally, the majority of studies fail to 

take into account the interdependencies between uncertain Q-parameters and the effects of the 

distribution types of the Q-parameters. In this chapter, an MCS-based uncertainty analysis 

framework for the Q-system has been proposed. By conducting the MCS, the probabilistic 

sensitivity analysis has been used to investigate the impact of the input parameters on the Q-system 

and associated rock mass parameters. The effects of the correlations between input parameters and 

the effects of the input parameter distribution types on the Q value and associated rock mass 

properties and responses have also been examined. The proposed MCS-based uncertainty analysis 

framework for the Q-system is described in detail in Section 4.3, in which the MCS-based 

stochastic model of the rock mass quality Q and the uncertainty analysis of the probabilistic Q-

system are introduced. The framework has been implemented in a case study of the Shimizu 

highway tunnel in Japan for illustrative purposes. The results and discussion on the case study are 

in Section 4.4, followed by the major conclusions in Section 4.5. 
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4.3 Methodology 

4.3.1 Stochastic modeling of the rock mass quality 

Probabilistic Q value from Monte Carlo simulation 

 The MCS is a stochastic simulation method where the distribution of possible outcomes is 

produced from different randomly sampled sets of values from the probability distributions of the 

input parameters. The probability distribution is specified for each input parameter, and the 

randomly selected input values are used to simulate a wide range of possible output values 

(Palisade Corporation, 2016). The disadvantages of MCS are that it requires substantial 

computational resources, along with explicit probability distribution functions for the input 

variables (Cai, 2011). For a more comprehensive description of MCS, the reader can refer to the 

literature (Gentle, 2013; Law et al., 1991; Vose, 2008). 

The Excel add-in program @RISK is an advanced statistical risk analysis system that 

implements MCS in a standard spreadsheet package, in which the uncertainty in the input 

parameters can be explicitly characterized to produce outputs that describe all the possible 

outcomes (Palisade Corporation, 2016). It allows the definition of different types of continuous 

and discrete probability distributions for the input parameters in the spreadsheet, and it is capable 

of making a best-fit for the available data as well as generating statistics for the data and the fit 

curve. The @RISK program enables stochastic simulation using both Monte Carlo and Latin 

hypercube sampling techniques for any number of iterations per simulation and any number of 

simulations in a single analysis (Palisade Corporation, 2016). For the Monte Carlo sampling, 

samples are more likely to be drawn from the areas of the distribution that have a higher probability 

of occurrence due to its entirely random feature. Clustering becomes an issue when a distribution 

includes low probability outcomes, which could have a major impact on the results, especially 

when a small number of iterations are carried out.  

In contrast, the Latin Hypercube sampling requires fewer iterations due to the use of stratified 

sampling from the input probability distributions. Stratification divides the cumulative density 

function (CDF) of the input parameter into equal intervals, and a sample is then randomly selected 

from each interval or stratification of the input probability distribution. Sampling thus draws 

representative samples from each interval, which then recreates and more accurately reflects the 

input probability distribution. Compared with traditional Monte Carlo sampling, Latin hypercube 

sampling provides increased sampling efficiency and faster runtimes due to fewer iterations. The 
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Latin hypercube sampling also aids the analysis in situations where low probability outcomes are 

represented in the input probability distributions (Palisade Corporation, 2016). 

 In the Q-system, all the input parameters can be regarded as random variables. The 

variability of the input parameters can be described by their relative frequency histograms, which 

can be accessed from the Q-histogram logging data by drilled core logging, exposed outcrop 

mapping, and tunnel mapping. When the statistical distributions are developed for the six input 

parameters, the distribution of the Q value can be calculated according to Eq. (2.1) using MCS 

with Latin hypercube sampling in the @RISK program. The Q-input parameter values are 

randomly sampled from their distributions, and the probability distribution of the Q value is 

generated from the simulation runs. A statistical analysis can be performed on the probability 

distribution of the Q value that is produced, and the statistics for rock mass quality can be derived. 

Probabilistic evaluation of the rock mass properties and responses 

 Once the probability distributions of the Q value and other input parameters have been 

determined, the rock mass properties and responses can be similarly characterized probabilistically 

according to empirical equations using the MCS with the @RISK program.  

parameters (e.g., the tunnel wall displacement or the radius of the plastic zone), either an MCS or 

the point estimate method (PEM) (Rosenblueth, 1981) can be used for the numerical analysis. The 

RS2 FEM program is capable of performing probabilistic analysis using MCS with both Monte 

Carlo and Latin Hypercube sampling as well as PEM techniques. The MCS and PEM techniques 

can be used to probabilistically characterize the uncertainties in the input parameters of the 

numerical model. 

Table 4.1 and Table 4.2 list the empirical correlations between the Q value and the rock mass 

properties and responses, respectively. The parameters that must be calculated for the rock mass 

responses include the displacement and plastic zone radius of the underground opening; based on 

Hoek and Marinos (2000b), the Duncan Fama (1993), and the Barton (2002) approach, are 

introduced. Note that the Q-based empirical correlations for evaluating the rock mass responses 

only serve as a preliminary estimation. These empirical correlations were either derived using 

several simplified theoretical assumptions or obtained from the databases of different case histories. 

For a more reliable and accurate assessment of the rock mass responses of underground 

excavations, a numerical analysis should be conducted. 

Probabilistic analysis of the rock mass response with numerical modeling 
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 Once the probability distributions of the rock mass properties have been determined, they 

can be used as the inputs for a numerical model to evaluate the rock mass responses. To achieve 

this, a finite element method (FEM) or a finite difference method stress analysis may be performed, 

taking the variability of the input parameters into account and including the rock mass properties 

and the in situ stress (Cai, 2011). To calculate the probability distributions of the tunnel response 

parameters (e.g., the tunnel wall displacement or the radius of the plastic zone), either an MCS or 

the point estimate method (PEM) (Rosenblueth, 1981) can be used for the numerical analysis. The 

RS2 FEM program is capable of performing probabilistic analysis using MCS with both Monte 

Carlo and Latin Hypercube sampling as well as PEM techniques. The MCS and PEM techniques 

can be used to probabilistically characterize the uncertainties in the input parameters of the 

numerical model. 

Table 4.1 Empirical correlations based on the Q value for estimating rock mass properties. 

 

Table 4.2 Empirical correlations based on the Q value for estimating rock mass responses. 
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The PEM is capable of combining probabilistic input parameters and evaluating the 

probability distribution of the output variables. In the PEM, several estimation points are sampled 

to calculate the possible values of the outcome, and proper weights should be assigned to obtain 

an approximation of the probability distribution for the output variable (Baecher and Christian, 

2003). The two-point estimate is commonly used, and the evaluation points of an input variable 

are located at one standard deviation above and below its mean. The probabilistic input parameters 

are often assumed to be uncorrelated and to follow a normal distribution for the sake of simplicity. 

Compared to an MCS, which requires a large number of simulations and thus is computationally 

expensive, the PEM needs much less computational effort, i.e., 2n solutions, to find the mean and 

standard deviation of the output variable, where n is the number of input variables. The main 

limitation of the PEM is that it is only suitable when the variables follow a normal distribution 

(mean and standard deviation). If either the input or output variables differ from a normal 

distribution, the approximation obtained by using the PEM will lead to inaccuracies. 

For PEM-based probabilistic modeling in RS2, the normal distribution is assumed for all the 

uncertain input and output parameters, and the mean and standard deviation from the estimated 

distributions of the rock mass properties are used as the inputs for numerical modeling. For the 

MCS model, the distribution types of the rock mass parameters are derived from the best fit 

distribution for each parameter, while the statistical values, such as the mean, standard deviation, 

min, and max, are estimated from the actual relative frequency histograms which are used for the 

Q-parameters. After performing the numerical calculations and interpretations, the statistics (mean, 
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standard deviation) of the rock mass response parameters can be obtained at arbitrary points in the 

model based on a certain number of iterations. 

4.3.2 Uncertainty analysis in the Q-system 

Probabilistic sensitivity analysis in the Q-system 

The sensitivity analysis of the Q value to its input parameters can be conducted in the @RISK 

program. The sensitivity analysis results are shown using tornado graphs that display the rank of 

the input distributions relative to the impact on the output distribution. Inputs with the largest 

impact on the output distribution have the longest (and topmost) bars in the graph (Palisade 

Corporation, 2016). Four tornado graphs in @RISK are commonly used for ranking the relative 

importance of input parameters: the regression coefficients, the Spearman correlation coefficients, 

the contribution to output variance, and the effect on output mean. For the tornado graphs showing 

regression coefficients or Spearman correlation coefficients, the length of the bar shown for each 

input distribution is based on the coefficient value calculated between the output and the input 

parameter. It should be noted that the regression coefficient describes the size of the effect each 

input has on the output. In contrast, the correlation coefficient indicates whether increasing the 

input generally increases or decreases the output and how consistent that trend is, but it tells 

nothing about the strength of the influence. In the @RISK program, the regression coefficient for 

an input variable shown on a tornado graph is the scaled value normalized by its standard deviation 

and the standard deviation of the output, which also reflects the impact of the input parameters on 

the output. For tornado graphs showing the contribution to variance, the length of the bar is the 

amount of change in the output attributable to each input. These values are calculated during the 

regression analysis. Unlike a regression coefficient, this measurement is unaffected by the 

magnitude of the input. In the tornado graph, to visualize the effect on the output mean, the double-

sided tornado has one bar for each selected input. The output means are calculated for the output 

values in each iteration as the input varies over its range. 

In the tornado graphs, the numbers shown at the two ends of a bar graph describe the calculated 

values for the different ranking techniques used during the simulation process. Note that the 

numbers at the two ends of the double-sided tornado, showing the effect on the output mean, are 

the means of the output variable from the iterations with the lowest and highest 10% of input 

values, respectively. The rank of the input parameters is based on the range between the highest 

and the lowest mean value caused by that input parameter, i.e., the length of the bar. The regression 
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coefficient and the percentage contribution to variance are obtained based on a stepwise multiple 

regression, an iterative process where input variables are entered into the regression sequentially. 

Spearman’s correlation coefficient is calculated based on the Spearman rank-order correlation, 

which works well for linear or nonlinear correlations. In addition to the tornado graphs, @RISK 

also provides a spider graph of input parameters which show how the output mean value varies 

with an increase in the input parameter across its range. The steeper the gradient of the trend line 

is, the greater the effect this input parameter has on the output. A spider graph shows more 

information than a tornado graph, when used to describe the effect on an output mean, since the 

spider graph shows the rate of change for the input parameters while only the overall range of the 

output is shown in the tornado graph. 

Correlation between input parameters in the Q-system 

 As mentioned in Section 3.4.6 in Chapter 3, the correlation between RQD and Jn has been 

previously documented, and the effect of the correlation on the Q value can be studied. The 

Spearman rank-order correlation coefficients between RQD and Jn can be specified at values 

between -1 and 1 in different scenarios using the correlation matrix function in the @RISK 

program. The probability distributions of the Q values and the statistics generated under the 

different simulation scenarios can then be compared. Since the rock mass properties and responses 

are associated with the Q value, the effect of the negative correlation between RQD and Jn on these 

output variables can also be investigated. 

Distribution types for input parameters in the Q-system 

 In rock engineering, the uncertainty components include the aleatory variability, caused by 

randomness, and the epistemic uncertainty, caused by the lack of knowledge (Baecher and 

Christian, 2003). The best way to quantitatively measure these uncertainties is to use probability 

distribution models that are expressed in the form of a mathematical distribution (Panthi, 2006). 

Because of the variable nature of rock masses, it is difficult, or sometimes even impossible, to give 

a single representative value of Q (Barton and Grimstad, 2014). To better represent and record the 

locally variable properties, the Q-histogram logging chart is introduced and has been widely used 

to register the Q-parameter data. Based on the Q-histogram logging chart, the relative frequency 

of these Q-parameters can be intuitively observed, and statistics (e.g., mean, mode, min, max) can 

also be obtained. Using the @RISK program, the best-fit PDF for each Q-parameter can be 

determined by the distribution fitting function that can meet the fit test. However, the geotechnical 
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data collected from the project site are often limited and incomplete in terms of rock engineering 

data. In such cases, an alternative method is to assume appropriate PDF models for the 

geotechnical parameters with perceived uncertainty on the basis of limited experimental or field 

measured results and logical engineering judgment (Hoek, 1998a; Sari, 2009). Sen and Kazi (1984) 

stated that the distribution function of the RQD is unique since it is a random variable that is a 

function of discontinuous spacings and numbers. The most commonly used probability distribution 

models for rock mass quality evaluation have been summarized in Error! Reference source not f

ound. in Section 3.4.7 in Chapter 3 based on various research and case studies. The various 

distribution types can be assumed for the input parameters in the Q-system and then compared to 

the collected Q-histogram logging data to investigate their effects on the Q value and the associated 

rock mass parameters. 
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Figure 4.1 Block diagram of the proposed framework. 

The proposed framework is illustrated in Figure 4.1. The uncertainty in the rock mass is 

characterized by the probability distribution of input parameters in the Q-system. Using the MCS 

technique, the probability distribution of the Q value, rock mass properties and responses (e.g. 

displacement, plastic radius) can be obtained based on the Q-derived empirical relationships. In 

this process, the uncertainty is propagated from the Q-parameters to the Q value and to the Q-

based rock mass parameters. To quantitatively characterize the process, the sensitivity analysis, 

the effects of the correlation, and the effects of distribution types among the input parameters in 

the Q-system can be performed. On one hand, the empirically derived probabilistic rock mass 

properties can be used to evaluate the rock mass responses empirically using the MCS technique; 

on the other hand, these probabilistic rock mass properties can also serve as the input in numerical 

modeling to estimate the probabilistic distribution of rock mass responses. The empirically and 

numerically derived probabilistic distribution of rock mass responses can be compared with each 

other and should be validated in comparison to the field measured or monitored rock mass response 

data. 

4.3.3 Application to a case study of the Shimizu tunnel 

 The Shimizu tunnel No. 3, located in the city of Shimizu in Japan, is an important section 

of Japan’s Tomei-Meishin Expressway project. It is a research tunnel with a length of 1.12 km 

(height 12 m, width 18 m). The depth varies from 30 m to 190 m with an average of approximately 

83 m. The average in-situ stresses are 2 MPa and 1.73 MPa in the vertical and horizontal directions, 

respectively, giving a stress ratio of 0.83 (Vardakos, 2003). Figure 4.2 shows the longitudinal 

geologic section along the western and central sector tunnel. Field investigations showed that the 

ground was composed of soft sedimentary rock formations, including weathered soft sandstone 

(Wss) and interbedded mudstone-sandstone (Walt 1 and Walt 2). The tunnel was excavated mainly 

through the Wss sandstone formation with a density of 2.5 g/cm3. Three major joint sets were 

recognized in the weathered soft sandstone. The geotechnical data are collected by the Norwegian 

Geotechnical Institute by inspecting drilled cores, field mapping, geophysical investigations and 

laboratory tests on intact rock samples, and a detailed Q logging was made (Barton et al., 1995). 

Core logging was carried out for a total of four selected drill cores in the western and central sector 

from the Shimizu tunnel site. Two horizontal borings were drilled in the western portals with about 
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100 m in length for each, and one vertical and one inclined borings were drilled in the central 

sector. Extensive core photo analysis was also conducted to determine the parameter values in the 

Q-system. As a result, a complete Q-classification based on about 400 Q-logging data, was 

obtained for the western and central sector of the Shimizu tunnel. Extensive rock mechanics tests 

were also performed on the collected drilled cores. The lab test results on the core samples 

collected in the western and central sector showed that the uniaxial compressive strength (UCS) 

for the intact rock samples is in the range of 20-78 MPa, and the intact rock elastic moduli are in 

the range of 5.4-15 GPa. The friction angles of the rock samples are in the range of 37-53 degrees, 

and the cohesion of the intact rock is in the range of 1.9-6.8 MPa (Vardakos, 2003). 

At the Shimizu tunnel No. 3, the tunneling boring machine (TBM) pilot tunneling and 

enlargement method was utilized. The TBM tunnel was first bored within the top heading cross-

section using a 5 m diameter triple shield TBM. After the advance of the TBM pilot tunnel, the 

gradual enlargement of the tunnel was performed by drilling and blasting top heading, a bench and 

finally an invert. Since the Shimizu tunnel No. 3 is a research tunnel, extensive instrumentation 

was installed to monitor the tunnel response during tunnel construction. Total stations with reflex 

targets and 12 m long multipoint extensometers were used to monitor the tunnel deformation 

(Vardakos, 2003). However, the measured data that is available is mainly for the top heading 

excavation, which can be used to compare the estimated and measured displacement for validation. 

Thus, the analysis below is focused on the top heading stage of the tunnel excavation. For more 

details about the Shimizu tunnel No. 3, the reader may refer to the literature (Vardakos, 2003) 

 

Figure 4.2 The longitudinal geologic section in the western and central sector tunnel. BH1 and 

BV2-2 are locations of two boreholes (Vardakos et al., 2007) 
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4.4 Results and Discussion 

4.4.1 Probabilistic analysis in the Q-system 

Distribution of the Q value 

According to Barton et al. (1995), the Q-histogram logging data (about 400 data in total) 

was collected in the western-central sector of the Shimizu tunnel, and Figure 4.3 shows the relative 

frequency histograms of the Q-parameters. It is obvious that the RQD is taken as a continuous 

random variable expressed in the form of a histogram, while the other input parameters are 

expressed as discrete random variables in the form of probability mass functions. The RQD is 

bimodal and approximately negatively skewed towards low values on the left. For the other input 

parameters, the relative frequency on the vertical axis represents the percentage of each discrete 

value for each parameter. The qualitative statistics of all the input parameters in the Q-system have 

been conducted using the @RISK program and are depicted in Table 4.3. The statistical 

distribution of the Q value was obtained using MCS in the @RISK program according to Eq. (2.1) 

and based on the relative frequency histograms of the Q-parameters. The Latin hypercube 

sampling technique was used, and a simulation was performed with 10,000 iterations.  

The distribution of the Monte Carlo simulation Q values and the best fit PDF are shown in 

Figure 4.4. The mean and standard deviation of the MCS-simulated Q value are 6.63 and 7.52, 

respectively, and the lognormal distribution is the best fit distribution. In the same western-central 

sector of the Shimizu tunnel, Tiwari et al. (2017) derived the probability distribution of GSI based 

on statistical intact rock and joint properties, and the obtained mean of GSI is 47 and the standard 

deviation is 2.25. The obtained GSI distribution is consistent with the derived distribution of the 

Q value, with both indicating the best estimate of “fair” rock mass quality in this tunnel area. The 

distribution of the logarithm (base of 10) of the Q value is also shown in Figure 4.4 with the normal 

distribution fit. The mode, median and mean values of the simulated Q value are increasing, 

corresponding to approximately 1.08, 3.82 and 6.63, respectively, which is consistent with the 

characteristics of a lognormal distribution. Similarly, the lognormal distribution was found to be a 

good fit of the statistical distribution of the predicted or mapped Q values for the rock tunnels 

(Daraei and Zare, 2018; Lu et al., 2018b). The logarithms of the actual mapped Q values in the 

Northern Link project in Stockholm, Sweden, were also found to conform to a normal distribution, 

which also supports the lognormality of the Q value distribution (Benhalima, 2016). 
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Figure 4.3 Histograms of Q-parameters: (A) RQD; (B); Jn; (C) Jr; (D) Ja; (E) Jw; (F) SRF 

Table 4.3 Comparison of the Q value statistics calculated by different methods. 
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Traditionally, an interval analysis based on the statistics obtained from the Q-histogram 

logging in the site investigation stage is used to estimate the Q value. Table 4.3 compares the 

statistics of the Q value calculated from different methods. The interval analysis results show that 

the Q value is in the range of 0.004-200, from “exceptionally poor” to “exceptionally good”, based 

on the rock mass classification. The arithmetic mean and mode (most frequent value) of the Q 

value is also calculated directly by substituting the mean and mode of all the Q-parameters into 

Eq. (2.1), giving mean and mode values of 2.01 and 15.83, respectively. For the derivation of the 

typical min and max of the output Q value, the extreme values are selected for input parameters, 

and it is based on the assumption that the numerators for all the input parameters are achieved at 

the maximum (or minimum) values while at the same time the denominators are achieved at the 

minimum (or maximum) values. In other words, all the numerators (or denominators) are assumed 

perfectly positively correlated while perfectly negative correlations are assumed between 

numerators and denominators. Similarly, for the derivation of mode and mean of the Q value, the 

respective mode and mean values for each input Q-parameter are used. This is assumed that the 

mode and mean values for all the Q-parameters take place simultaneously. These idealized 

assumptions are not logical and rarely met in practice. Clearly, these derivation processes using 

the interval analysis do not realistically reflect the relationship among the input parameters in the 

Q-system and the derived range is relatively large.  

By contrast, the Monte Carlo simulated Q value has a much narrower range (0.013-74.03) 

with a mean and mode of 6.63 and 1.08, respectively, as shown in Figure 4.4. The standard 

deviation and the arithmetic mean were obtained for each Q-parameter and the overall Q value in 

the @RISK program. The coefficient of variation (COV), a dimensionless measure of uncertainty 

and defined as the quotient between the standard deviation and the mean, was also obtained for 

the Q-parameters and the Q value in Table 4.3. To ensure the selection of representative values for 

the Q-parameters, Barton (1993) proposed a method to calculate the weighted average value for 

each Q-parameter. First, the weighted average value, calculated by adding the 10% poorest, 60% 

most typical and 30% best values, is obtained for each Q-parameter. Then, the weighted average 

Q value is obtained by substituting the weighted average values of all the Q-parameters into Eq. 

(2.1). The calculated weighted average Q value is 7.08, which is close to the mean (6.63) of the 

Monte Carlo simulation Q value. Singh and Goel (1999) also suggested that a geometric mean 

obtained from the minimum and maximum values can be considered as a representative Q value, 
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which would reduce the bias and generate confidence among users. The geometric mean of the Q 

value, briefly calculated as the square root of the product between the minimum and maximum Q 

values, Qmin and Qmax, can be assumed in the design calculations (Singh and Goel, 1999). In this 

case study, the minimum (0.004) and maximum (200) values, calculated from the interval analysis 

results, are taken as Qmin and Qmax, respectively. The calculated geometric mean of the Q value is 

0.94, which is smaller than the mean values calculated by other methods.  

 

 

 

Figure 4.4 Statistical distribution of Monte Carlo simulated Q value and distribution fit. (A) Q 

value; (B) logarithm of Q value on the base of 10 
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From the results, the Monte Carlo simulation is superior to the interval analysis in 

estimating the statistics of the Q value. The MCS technique can more realistically account for the 

correlations, e.g. RQD and Jn, among input parameters and provides the full probability 

distribution and a much narrower range for the Q value compared with the interval analysis method. 

The probability that the Q value would be less than a certain value or in a certain interval could be 

determined from the PDF or CDF of the Monte Carlo-simulated Q value. By contrast, the interval 

analysis only produces an interval that provides little information with which to make an 

engineering design decision, and the uncertainty is too large to make a subjective judgment (Bedi, 

2013). In addition, the statistics of the Q value calculated using the MCS are more reliable than 

those from the interval analysis. The statistics (min, max, arithmetic mean, standard deviation, 

mode, and median) of the Monte Carlo simulation Q value were obtained based on a larger number 

(10,000 in this case) of generated samples during the MCS process. In contrast, in the interval 

analysis the mean and mode of the Q value are directly calculated from the mean and mode of all 

the input parameters. In the calculation of the mean Q value during the MCS process, the effect of 

the standard deviations of the Q-parameters has been taken into account. By contrast, this effect is 

neglected in the interval analysis and may lead to some inaccuracies. Table 4.3 also shows that the 

calculated mode (15.83) is much larger than the arithmetic mean (2.01) in the interval analysis, 

while the mode (1.08) is smaller than the mean (6.63) in the Monte Carlo simulation results. 

According to the lognormality of the Q value distribution, the mode should be smaller than the 

arithmetic mean. In this sense, the Monte Carlo simulation results reflect the characteristics of a 

lognormal distribution for the Q value. Furthermore, the standard deviation, a measure of spread, 

can be obtained for each input parameter and the generated Q value in the MCS process. 

Consequently, the COV can be calculated for each input parameter and enables the quantitative 

characterization of uncertainty in the input parameters and the effects on the overall Q value. 

 In addition to the interval analysis, both the geometric mean and the weighted average 

calculations are deterministic approaches to obtaining a representative value of the Q index. By 

definition, the geometric mean is calculated as the nth root of the product of n (nonnegative) random 

variables (Fenton and Griffiths, 2008). However, in the geometric mean calculation method used 

by Barton (1993), only the extreme values, i.e., the minimum and maximum, are included in the 

calculation for the geometric mean of the Q value. The result is highly sensitive to the extreme 

values, and the role that other Q values in the Q value range play in the geometric mean value has 
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been overlooked. A geometric mean Q value of 0.94 was generated, which greatly underestimated 

the actual rock mass quality. In comparison to the geometric mean, the weighted average method 

(Barton, 1993) accounts for the effect of the mode in addition to the extreme values in the input 

parameters. As a result, the weighted average (7.08) is closer to the mean (6.63) of the Monte Carlo 

simulation Q value. However, both the geometric mean and weighted average methods do not 

provide the full probability distribution of the Q value and do not reflect the uncertainties involved. 

Thus, it is also inferior to the MCS method in probabilistically estimating the Q value. 

Probability distributions of the rock mass properties and responses 

 Table 4.4 lists the Q-based empirical relationships for estimating the rock mass properties 

and responses for the Shimizu tunnel case study. There are two approaches for estimating the rock 

mass properties from the Q value, i.e., the independent and normalized estimation approaches 

(Vásárhelyi and Kovács, 2017; Zhang, 2017). In the independent approach the rock mass 

properties can be calculated independently of the intact rock properties, and thus Eqs. (2-4) and (7) 

belong to this approach. By contrast, the normalized estimation approach indicates the dependence 

of the rock mass properties on the intact rock properties, and Eqs. (5) and (9) are examples of this 

approach. The intact rock properties are also included in Table 4.4 for comparison. The UCS and 

the elastic modulus of the intact rock samples are assumed to follow a normal and a lognormal 

distribution, respectively, which is based on published data from the literature (Hoek, 1998a; Li 

and Low, 2010; Sari, 2009; Tiwari et al., 2017). The means and standard deviations of the 

distributions for the intact rock parameters are estimated using the three sigma rule. The 

independent estimating approach does not work well in this case study since the estimated elastic 

modulus values of the rock mass are even larger than those of the intact rock as seen by comparing 

the mean (10.2) of the intact rock with the mean values calculated by Eqs. (2-4). This is not 

reasonable and should be discarded. Additionally, the rock mass elastic modulus calculated from 

Eq. (4.1) shows the minimum value as negative, which is not physically possible. This is because 

there is approximately an 18% probability that the Q value is smaller than 1, as can be estimated 

from Figure 4.4, and the logarithms of values less than 1 yield negative results. Recall that Eq. 

(4.1) in  

parameters (e.g., the tunnel wall displacement or the radius of the plastic zone), either an MCS or 

the point estimate method (PEM) (Rosenblueth, 1981) can be used for the numerical analysis. The 

RS2 FEM program is capable of performing probabilistic analysis using MCS with both Monte 
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Carlo and Latin Hypercube sampling as well as PEM techniques. The MCS and PEM techniques 

can be used to probabilistically characterize the uncertainties in the input parameters of the 

numerical model. 

Table 4.1 applies to cases where the Q value is greater than 1 and is generally for hard rock masses. 

Thus, great care should be taken to select the appropriate empirical correlations for estimating the 

rock mass properties. 

Additionally, the UCS of the rock mass estimated from Eq. (4.8) using the normalized 

estimating approach is more reliable than that calculated from Eq. (4.6) using the independent 

approach, which accounts for the actual “fair” to “poor” quality in the jointed rock mass in this 

case study. Similarly, Hoek (2007) proposed that estimated rock mass property results are usually 

more reliable taking into account the intact rock strength. Vásárhelyi and Kovács (2017) also 

showed that the normalized rock mass properties calculated using the intact rock data usually 

provide a better regression coefficient. The probabilistic distributions of the rock mass properties 

estimated by the normalized estimation approach (Vásárhelyi and Kovács, 2017), including the 

UCS, deformation modulus, cohesion, and friction angle of the rock mass, are shown in Figure 4.5. 

These probabilistic rock mass properties are then used as the inputs to an empirical estimation of 

the tunnel displacement without support, (Pi=0), according to the empirical correlations shown in 

Table 4.4Table 4.4. For the Hoek and Marinos (2000a) approach in Eq. (4.11) and the Duncan 

Fama (1993) approach in Eq. (4.12), it is assumed that the tunnel is circular and that the in situ 

stress is hydrostatic. The equivalent radius is approximately 4.83 m for a circular opening based 

on the same area criterion as the actual area of the top heading. The hydrostatic stress is calculated 

as the product of the unit weight and the overburden in this case study. For the Barton (2002) 

approach, the actual span of 18 m for the top heading was used. The tunnel displacements (without 

support) estimated using these three approaches are compared in Table 4.4. The actual measured 

displacement obtained from the total stations and extensometers in the top heading excavation was 

on the order of 10 mm. This displacement value indicates the tunnel displacement after the support 

was installed and effective, and the pre-convergence before the support installation was not 

considered. Thus, the measured displacement cannot be directly used to validate the empirically 

estimated displacement. 

Table 4.4 Comparison of the estimated rock mass properties and displacement values using 

different empirical correlations. 
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Fortunately, the simulation results using the UDEC software and the convergence-

confinement method by Vardakos et al. (2007) were validated by the measured displacement, and 

the established UDEC model was considered valid and reliable. The ground characteristic curves 

generated from the UDEC model showed that the displacement without support is in the range of 

30~40 mm.  

Figure 4.6 shows the probability distribution of tunnel displacement estimated using the tunnel 

squeezing problems. In the Duncan Fama model, it is assumed that the surrounding weak rock 

mass behaves as an elastic-perfectly plastic material with no plastic volume change during failure. 
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Figure 4.5 Statistical distributions of estimated rock mass properties. (A) UCS; (B) deformation 

modulus; (C) cohesion; (D) friction angle 

According to the derived Q value and rock mass properties, this approach does not fit the case of 

the Shimizu tunnel. Thus, the Hoek and Marinos approach and the Duncan Fama approach, which 

work best for weak and very weak rock masses with assumptions of a circular tunnel and 

hydrostatic stress, are not suitable for estimating tunnel displacement in the current case study. In 

contrast, the Barton approach, empirically derived from hundreds of case records, uses the actual 

tunnel span and does not restrict the stress conditions, thus providing a more reliable estimate of 

tunnel displacement. Therefore, for this case study, the Barton approach performs better for 

empirically deriving the preliminary estimate of the tunnel displacement, which can be compared 

with the displacement generated from the detailed analysis using the FEM numerical modeling 

program. 



 

83 

 

 

Figure 4.6 Probability distribution of tunnel displacement estimated using the Barton approach 

Distribution comparison of rock properties between intact rock and rock mass 

 The distributions of rock properties, including the UCS, elastic modulus and cohesion, are 

compared between intact rock and rock mass, as shown in Figure 4.7. Due to the weakening effect 

of joints, the rock mass properties are smaller than those of intact rock, and the distributions of 

rock mass are accordingly to the left of the distributions of intact rock. 

Due to the limited availability of in-situ rock mass property data in the Shimizu tunnel case, 

alternatively, the predicted rock mass properties can be compared to back-calculated values from 

measured or instrumented data in the numerical models for verification. The rock mass modulus 

value of 1 GPa, which was used in the numerical models in the discrete element modeling by 

Barton and Chrysanthakis (1996) agrees very well with the mean value (1.01 GPa) of the predicted 

distribution of rock mass modulus, as marked in Figure 4.7(b). Similarly, as seen in Figure 4.7(c), 

the cohesion value of 2 MPa for the rock mass, used in UDEC models by Vardakos (2003), is 

between the mode (1.64 MPa) and median value (2.67 MPa) of the predicted distribution. The 

cohesion value of 2 MPa is also within the range of one standard deviation of the mean value 

(0.68~6.16 MPa) and has a high probability of occurrence in the predicted distribution of rock 

mass cohesion. Thus, the probabilistic estimates of rock mass properties have, to some extent, been 

verified by the back-calculated values used in the numerical models. 

4.4.2 Probabilistic analysis in numerical modeling 

The Shimizu tunnel No. 3 is a research tunnel, and instrumentation and measurement were 

performed accordingly. The displacement data during the heading construction at the section STA 
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913+65 in the western sector of the tunnel, as can be seen in Figure 4.2, is available, thus the top 

heading construction at this section will be modeled in the following numerical studies using the 

FEM RS2 software. 

 

 

 

Figure 4.7 Comparison of rock properties between intact rock and rock mass: (A) UCS; (B) 

elastic modulus; (C) cohesion 



 

85 

 

It should be noted that the data for actual Q value is not available at the section STA 913+65. 

However, the rock mass quality data obtained from core logging at the end of the BH1, which is 

close to the STA 913+65, is available. The Q index is in the range of 1-10 and the independent 

RMR logging reveals the range of 55-63. This indicates the “fair” rock mass quality at the section 

based on RMR and Q classifications. 

Unsupported tunnel case 

The FEM program RS2 was used to conduct the numerical analysis for this case study. Recall 

that the mode, median and mean for the estimated distribution of the Q value are 1.08, 3.82 and 

6.63, respectively. According to the Q-based rock class, the rock mass quality at the western-

central sector is mainly “fair” and “fair” to “poor”. It is also revealed from the site investigation 

results that three major joint sets existed in this tunnel area. As seen in Figure 4.5, the estimated 

rock mass properties using the normalized estimation approach also indicate the fair to poor quality 

of the jointed rock mass in this tunnel area. Based on these rock mass properties and characteristics, 

according to the descriptions and guidelines on post-failure behavior or rock mass given by Hoek 

and Brown (1997), it is reasonable to assume that the surrounding rock mass followed the Mohr-

Coulomb failure criterion and that the material behaved in an elastic perfectly-plastic way. The 

tensile strength of the intact rock was not available in this case study; thus, the following equation 

was used to estimate the tensile strength (Hoek and Brown, 2018): 

0.81 7c
i

t

m



= +         (4.18) 

where c  is the UCS of the rock mass; t  is the tensile strength of the intact rock; im  is 

the material constant for the intact rock, related to the rock type and texture. 

The UCS of the rock mass has been estimated using Eq. (4.8), and its distribution is shown in 

Figure 4.5. The Shimizu tunnel was mainly excavated through weathered soft sandstone, and the 

mi value was assumed to follow a normal distribution with a mean of 17 and a standard deviation 

of 4 (Tiwari et al., 2017). Therefore, the probability distribution of the intact rock tensile strength 

can be characterized according to Eq. (4.18). The tensile strength of rock mass can be calculated 

as follows (Hoek et al., 2002): 
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where tm  is the tensile strength of rock mass; s is the material constant of rock mass; mb is the 

reduced (rock mass) value of the material constant mi. 

According to Tiwari et al. (2017), the mean values for s and mb are 0.0029 and 2.57, 

respectively in the Shimizu tunnel case. Thus, the calculated tensile strength of rock mass is about 

0.055 MPa, which is used as the input in the FEM RS2 model. In the RS2 model, the rock mass 

properties, including the deformation modulus, cohesion and friction angle, can be treated as 

random variables. The statistical values of the probabilistic rock mass parameters were estimated 

from the Monte Carlo simulation results based on the Q-based empirical correlations. For the 

deterministic rock mass properties, the means were taken as the representative input values. In this 

Shimizu tunnel case, the deformation modulus, cohesion and friction angle of the rock mass were 

taken as the probabilistic inputs while the deterministic tensile strength and Poisson’s ratio were 

used in the RS2 model. In addition, the stress variability was also considered in this model. Stresses 

have been assumed to be normally distributed, and the COV of 25% was used by researchers based 

on the published literature (Cai, 2011; Hadjigeorgiou and Harrison, 2011; Lü et al., 2013; Şen and 

Sadagah, 2002). In this Shimizu tunnel case, taking the near surface excavation into account, the 

gravity field stress was used in the RS2 model, which changes linearly with depth as measured 

from the actual ground surface. Due to the limited information of the in-situ stress in the Shimizu 

tunnel case, the horizontal-to-vertical stress ratio was assumed to follow a normal distribution with 

a mean of 0.83 and a COV of 25% in the model. The inputs for the RS2 model are summarized in 

Table 4.5. The FEM mesh used in the model is displayed in Figure 4.8. No joint pattern was 

explicitly modeled in the mesh, despite the existence of three joint sets. This is because the 

deteriorating effect of the joints had already been taken into account in the estimation of the Q-

based rock mass properties. Singh and Goel (1999) also suggested that double-counting the effect 

of the joints should be avoided. The joints should not be considered in the analysis if these have 

been accounted for in the classification and estimation of the rock mass properties. 

The interpreted crown displacement of the unsupported tunnel in the PEM-based probabilistic 

analysis from the RS2 program is depicted in Figure 4.8, in which uncertainties in both rock mass 

properties and in-situ stress are considered The maximum displacement at the crown occurs at the 

point labeled “Crown C” and has a mean of 38.8 mm which agrees well with the displacement 

predicted by the previously published UDEC model (Vardakos et al., 2007) and the empirically 

derived displacement of 28.9 mm estimated using the Barton approach. The yield zone, 
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represented by sheared or tensioned elements in Figure 4.8, were developed mainly in the corner 

of the unsupported heading, and no yielded element was observed in the crown. 

To investigate the effects of uncertainty in the rock mass properties and in situ stress in the 

crown displacement, deterministic and probabilistic analyses were performed in RS2 using PEM 

and MCS modeling. For the deterministic scenarios, only single mean values of the rock mass 

properties and in situ stress were used. For the probabilistic scenarios, uncertain input parameters, 

such as the rock mass properties and in situ stress, were defined based on prescribed distributions. 

In the PEM model, the mean and standard deviation of the probabilistic parameters were used as 

model inputs. In the MCS model in RS2, the best-fit distribution type, mean, standard deviation, 

and min and max of the probabilistic parameters were required as model inputs. Note that for a 

normally distributed parameter, the max and min can be estimated at 3 standard deviations above 

and below the mean value according to the three-sigma rule (Duncan, 2000). The Poisson’s ratio 

and the horizontal-to-vertical stress ratio, in this Shimizu tunnel case, were assumed normally 

distributed, and the max and min values were estimated using the three-sigma rule. For the MCS 

model in RS2, the Latin hypercube sampling was applied, and 1,000 iterations were performed. 

Table 4.5 Input in the FEM RS2 model for probabilistic analysis 

Deterministic/Probabilistic Input parameters Mean SD COV 

Probabilistic Rock 

mass 

properties 

Deformation 

modulus/GPa 
1.01 0.47 47% 

Cohesion/MPa 3.42 2.74 80% 

Friction angle/degree 38.4 18 47% 

Deterministic 
Tensile strength/MPa 0.055 0 0% 

Poisson's ratio 0.3 0 0% 

Probabilistic 
In-situ 

stress 
Stress ratio 0.83 0.21 25% 

Table 4.6 compares the displacements at different crown points using both the deterministic 

and probabilistic modeling methods in RS2. The advantage of the probabilistic analysis over the 

deterministic analysis is clearly shown in Table 4.6. The standard deviation and COV can be 

obtained in the probabilistic analysis scenarios, while in the deterministic analysis of Scenario 1, 

only a single displacement value was obtained at certain crown points. The results also show that 

the uncertainty in the rock mass properties has a greater influence on the statistical displacements 
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Figure 4.8 FEM mesh and total displacement contour (without support) in RS2: (A) FEM mesh; 

(B) displacement contour after top heading excavation 

than the in-situ stress does. This indicates that the tunnel displacement is more sensitive to the 

uncertainties in the rock mass properties than those in the in-situ stress in this case study. If the in 

situ stress is deterministic, the probabilistic rock mass properties generate larger mean 

displacements (38.7 mm for the PEM method in Scenario 4 and 40.5 mm for the MCS in Scenario 

5) than the displacement (29.0 mm) obtained in the deterministic case in Scenario 1. Similar results 

can be obtained by comparing the generated mean displacements in Scenarios 2 and 6, Scenarios 

3 and 7 when the in situ stress is probabilistic. In contrast, the statistical displacement is not 

sensitive to the uncertainty in the in situ stress. This can be shown when Scenarios 1 and 2 are 



 

89 

 

compared in the case of deterministic rock mass properties and when Scenarios 4 and 6 are 

contrasted in the case of probabilistic rock mass properties. 

It is also revealed in Table 4.6 that the crown displacement derived from the MCS model has 

greater variation, described by the generated COV, than that calculated by the PEM model. This 

may be attributed to the differences in the distribution types and sampling mechanisms used in 

these two probabilistic modeling methods. In the PEM model in Scenario 6, three input parameters, 

the rock mass deformation modulus, Poisson’s ratio, and in situ stress, are assumed to be normally 

distributed, and only 8 (i.e., 23) values were sampled at one standard deviation above and below 

the mean for each input parameter. In contrast, in the MCS model, the actual lognormal distribution 

for the rock mass deformation modulus was used. A total of 1000 values have been sampled across 

the parameter range, and the distribution tails are well represented during the MCS process. The 

importance of distribution types and distribution tails has been reported by Jimenez and Sitar 

(2009). The use of the actual distribution form and the sampled values from the tail distribution 

may contribute to the greater variation of tunnel displacement generated by the MCS model. 

However, the computation effort required by the MCS model is much greater than that required 

by the PEM model in this case study. The results from Table 4.6 also show that the displacements 

at Crown points D and H are the same, which may be due to the similar stress conditions at these 

two symmetrical points on the tunnel crown. Recall that the joint sets were not explicitly modeled 

in the study, and this may also contribute to the same displacements which are shown at Crown 

points D and H. 

Supported tunnel case 

In practice, during the construction of the section STA 913+65, the standard support, 

including steel beams, shotcrete and rock bolts, was used as the primary support. The standard 

support was selected for CI class (corresponding to Q=4~10) based on the Japanese highway rock 

mass classification systems. The support system used in the tunnel section is summarized in Table 

4.7. According to Vardakos (2003), the rock bolts were assumed to be installed at the 50% 

relaxation in order to consider the elastic displacement occurred before the support, while beam 

and shotcrete supports were installed at the 65% relaxation. The PEM sampling was used in the 

RS2 model to perform the probabilistic deformation analysis with the prescribed support, 

designated as Scenario 10 in Table 4.6. Figure 4.9 illustrates the prescribed tunnel support pattern 

and tunnel displacement contour with support. As summarized in Table 4.6, the displacement at  
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Table 4.6 Summary of tunnel crown displacement in different scenarios 

Support 

scheme 
Input parameters 

 Modeling 

Method 
Scenario 

Displacement (mm) 

Point C Point D Point H 

Numerical 

calculation 

without 

support 

Rock mass 

properties 
In-situ stress Mean SD COV Mean SD COV Mean SD COV 

Deterministic 

Deterministic Deterministic 1 29 0 0 25.1 0 0 25.1 0 0 

Probabilistic 
PEM 2 29 0.98 3% 25.2 0.1 0.4% 25.2 0.1 0.4% 

MCS 3 29 0.689 2% 25.2 0.11 0.4% 25.2 0.11 0.4% 

Probabilistic 

Deterministic 
PEM 4 38.7 19.6 51% 33.9 17.4 51% 33.9 17.4 51% 

MCS 5 40.5 25.1 62% 35.4 21.9 62% 35.4 22.0 62% 

Probabilistic 
PEM 6 38.8 19 49% 34.1 16.9 50% 34.1 16.9 50% 

MCS 7 40.5 24.8 61% 35.6 21.9 62% 35.6 21.9 62% 

UDEC calculation results by Vardakos et al., 

(2007) 
8 30~40 N/A 

Empirical results from the Barton approach (Eq. 4.14) 9 28.9 36.9 128% N/A 

With 

support 

Probabilistic Probabilistic PEM 10 19.1 9.08 48% 15.7 7.44 47% 15.7 7.44 47% 

Actually measured value 11 11.5 N/A 13 N/A 12 N/A 
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Crown C has a mean of 19.1 mm and an SD value of 9.1 mm while the displacement at Crown D 

and H are similar, with a mean of 15.7 mm and an SD value of 7.4 mm. The actually measured 

displacement value at these crown points are also included. 

Table 4.7 Standard support system used in the section STA 913+65 

Sprayed concrete lining Steel arch Rock bolts  

UCS 

(MPa) 

Thickness 

(cm) 
Type Spacing (m) 

Tensile capacity 

(MN) 

Length 

(m) 

Circumferential 

spacing (m) 

17.6 20 H200 1.5 0.176 6 1.2 

 

 

Figure 4.9 The support scheme and PEM-based displacement contour of the supported tunnel. 

The predicted and actually measured displacement at tunnel crown points are compared in 

Table 4.6. The deterministic and PEM-based probabilistic predicted tunnel displacement before 

support are also included for comparison. The Crown C and D points are symmetrical, and the 

predicted and actually measured displacement values at these two points are almost the same, so 

only the Crown C case is demonstrated. The predicted tunnel displacement is lognormally 

distributed, consistent with the results obtained by (Hoek, 1998a). It is clearly that the tunnel 

displacement values, both mean and SD values, reduce significantly with the tunnel support 

installed. The actually measured displacements are single values at tunnel crown points, as marked 

in Figure 4.10. At the Crown C point, the deterministic measured value (11.5 mm) is close to the 

mode (14 mm) and within the range of one standard deviation of the mean (10~28.2 mm) in the 

PDF of the predicted tunnel displacement after support using RS2. The measured displacement 
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value (11.5 mm) at the Crown C point is also between the mode (7 mm) and median (18 mm) and 

has a high probability of occurrence in the PDF of tunnel displacement estimated using the Barton 

approach. Similar case is also observed at the Crown D. This indicates that the actual measurement 

values generally agree well with the mean or mode of the predicted displacement distribution. 

Thus, the predicted displacement distributions obtained using the PEM sampling in the RS2 model 

and the Barton approach are reasonably accurate and can provide possible range and dispersion in 

addition to the best estimate of tunnel displacement. 

 

 

Figure 4.10 Distribution of displacements at the tunnel crown. (A) at Crown C point; (B) at 

Crown D point 
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4.4.3 Probabilistic sensitivity analysis 

Sensitivity analysis has also been carried out during the MCS of the Q value in the @RISK 

program to examine the impact of the Q-parameters. Figure 4.11 depicts the tornado graphs for 

the different ranking techniques used in the Shimizu tunnel case study. In general, the results show 

that the SRF, Ja and RQD parameters have the most impact on the Q value, while the Jn, Jr, and Jw 

parameters are less important. The regression coefficient and the contribution to variance tornado 

graphs in Figure 4.11 (a) and (c) share the same rankings because both graphs are derived from 

the regression analysis. Figure 4.12 illustrates the spider graph generated in the @RISK program. 

The changes in the mean of the Q value relative to the changes in the values of the input parameters 

are shown. The mean Q value increases as RQD, Jr, and Jw increase but declines with increases in 

Jn, Ja and SRF. The spider graph provides similar sensitivity analysis results compared with the 

tornado graph by displaying the effect on the output mean. The input parameters Ja, SRF, and RQD 

have a greater impact on the Q value, and this is also obviously reflected in the spider graph 

because the rates of change for these parameters are larger compared to other Q-parameters. 

  

  

Figure 4.11 Rank of the relative importance of Q-parameters based on different ranking criteria: 

(A) ranked by regression coefficient; (B) ranked by Spearman’s correlation coefficient; (C) 

ranked by contribution to variance; (D) ranked by effect on output mean 
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 Traditionally, one-way sensitivity analysis is used to investigate the impact of the input 

parameters on the output by changing one input parameter while keeping the other parameters 

constant. The sensitivity index (SI) is a measure of the impact that the input parameters have on 

the output variable in the one-way sensitivity analysis, and is calculated as the percentage 

difference in the output when an input parameter varies across its entire range (Hamby, 1994). The 

SI can be obtained as follows: 

max min

max

*100%
D D

SI
D

−
=     (4.20) 

where Dmin and Dmax are the minimum and maximum output values, respectively, which result 

from varying the input over its entire range. 

 

Figure 4.12 Spider graph of the mean of the Q value across the range of the input parameters. 

In this case study, the Dmin and Dmax are taken as the minimum and maximum Q values 

calculated, according to Eq. (2.1), by inputting the minimum and maximum values of the specified 

input parameter while keeping the other five input parameters constant at their mean values. The 

SI was obtained by substituting the calculated Dmin and Dmax in Eq. (4.20) for each input parameter. 

The greater the SI is for an input parameter, the greater the influence of the input parameter on the 

output parameter is. Table 4.8 compares the sensitivity analysis results obtained by different 

ranking techniques. The COV of each Q-parameter is also included since a larger COV value 
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indicates more variability in the input parameter which may contribute more to the variation in the 

output Q value. Regarding the rank of relative importance, the smaller the rank number for an 

input parameter, the more important the parameter. Despite minor differences in the ranking results 

obtained by different ranking techniques, in general, the results show that the SRF, Ja and RQD 

are more important than the Jn, Jr, and Jw. 

Table 4.8 Sensitivity analysis results using different ranking methods. 

Q-parameter 

Relative importance ranked by different methods 

COV Sensitivity 
index 

Regression 
coefficient 

Spearman 
correlation 
coefficient 

Effect on 
output mean 

RQD 34.8% (3) 90% (3) 0.31 (3) 0.31 (3) 7.41 (3) 

Jn 30.7% (5) 73.3% (4) -0.285 (4) -0.23 (4) 7.28 (4) 

Jr 31.3% (4) 66.7% (5) -0.281 (5) 0.226 (5) 6.28 (5) 

Ja 113% (1) 92.5% (2) -0.32 (2) -0.51 (2) 9.36 (1) 

Jw 24.4% (6) 67% (6) 0.23 (6) 0.220 (6) 4.83 (6) 

SRF 87.5% (2) 93.3% (1) -0.42 (1) -0.59 (1) 7.59 (2) 

Note: The number in the parentheses is the ranking  

The aforementioned SI-based sensitivity analysis, which is a one-way sensitivity analysis, 

fails to account for the distribution form and the probability function of the input parameter and 

their effects on the sensitivity analysis. In contrast, the sensitivity analysis for the MCS in the 

@RISK program is capable of performing a multi factor sensitivity analysis, in which the effect 

of changes in several input parameters can be investigated by simultaneously varying different 

parameters. In this way, the compounded effect of a given variable can be evaluated. It is thus a 

probabilistic sensitivity analysis in which probabilistic distributions are utilized to consider the 

variations of input parameters rather than assigning certain values to input parameters. The 

calculation of the regression coefficients can reflect the simultaneous random sampling from the 

input distributions by displaying the sampled input values versus the output values calculated. 

Additionally, Fatemi et al. (2018) used spider graphs to analyze the sensitivity of the input 

parameters for measuring TBM performance on the output mean using @Risk software. A 

sensitivity analysis of the GSI, estimated from different quantitative methods, has also been 

conducted and used to rank the inputs relative to their contribution to the variance of the output 
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(Morelli, 2015). In a rock tunnel case study, the probabilistic input parameters in the Q-system 

were also ranked by their effect on the output mean, regression coefficient, Spearman correlation 

coefficient and contribution to variance using the @RISK program (Lu et al., 2018a). 

A sensitivity analysis is a useful tool to characterize the relationship between the input 

parameters and the output parameters as well as identify the most influential input parameters. 

However, in ground characterization and rock mass classification, sensitivity analyses of 

geological parameters are not adequately conducted. Instead, it is often assumed that all the 

geological parameters are equally important, which obviously fails to realistically assess the 

different impact that input parameters have on output parameters. Thus, it is essential to perform 

sensitivity analyses on ground parameters in the site investigation stage, especially for complex 

and challenging ground conditions. It is also beneficial to know which input parameter is the most 

influential overall to the rock mass quality, so that precautionary measures (e.g., dewatering, 

grouting, freezing, pre-blasting) can be taken in advance to improve the rock mass quality before 

excavation. The different ranking techniques in the sensitivity analysis can be used for comparative 

and checking purposes. 

4.4.4 Effects of the correlation between the RQD and Jn 

 The effect of the negative correlation between the RQD and Jn on the Q value, rock mass 

properties and the displacement estimated by the Barton approach is shown in Table 4.9. In general, 

the stronger the negative correlation is between the RQD and Jn, the greater the mean and the 

variation are, as described by the calculated COV of the output parameters. Wang and Akeju (2016) 

also reported that the output would be affected to a greater degree by the combination of correlated 

input parameters. The mean and range of the Q value, rock mass properties and displacement may 

be underestimated if the negative correlation is not taken into account. The SI was also calculated 

according to Eq. (4.20) to investigate the sensitivity of the mean and COV of the output parameters 

to the correlation coefficient, as displayed in the last row in Table 4.9. Regarding the sensitivity 

indices for all the output parameters, the SI for the displacement is the largest, followed by the SI 

for cohesion and the Q value, with the smallest SI being that for the deformation modulus and the 

UCS. This demonstrates that the negative correlation between the RQD and Jn has a greater impact 

on the displacement, cohesion and the Q value than on the deformation modulus and the UCS. 

This is related to the empirical correlations on which the output parameters are calculated, as 

shown in Table 4.1. For example, the displacement estimated by the Barton approach is associated 
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with the reciprocal of the Q value, while the deformation modulus and UCS are calculated based 

on the logarithm of the Q value as shown in Table 4.1. Results also show that SI for COV is 

generally greater than that for the mean, and this is because the SI values are greater (not shown 

here) for SD than for the mean values. This indicate the dispersion parameter (SD and COV) is 

more sensitive to the correlation compared to the mean values. 

Table 4.9 Effect of the correlation between the RQD and Jn on the Q value, rock mass properties 

and displacement. 

 

Lanaro and Bäckström (2007) plotted the RQD values against Jn based on field data collected 

from two boreholes and obtained the negative relation between the RQD and Jn at the Simpevarp 

site in Sweden. Interdependencies among input parameters were also observed and reported in 

other rock mass or ground classifications, such as the RQD and discontinuity spacing (Bieniawski, 

1989; Priest and Hudson, 1976; Sen and Kazi, 1984); the UCS and discontinuity spacing observed 

by Hamidi et al. (2010); and the degree of jointing or faulting and the availability of groundwater 

(Chan, 1981) in a ground classification. Similarly, correlations were also encountered among 

geological parameters in the field of underground construction, including the cohesion and friction 

angle of rocks and soils (Baecher and Christian, 2003; Fenton and Griffiths, 2008; Li and Low, 

2010; Lumb, 1970; Palmstrom and Stille, 2010), or the UCS and elastic modulus of rocks (Arslan 

et al., 2008; Deere, 1968; Palchik, 1999) Sari (2009) suggested that distributions in a probabilistic 
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model will often have to be correlated to ensure that only meaningful scenarios are generated 

during the model’s iterations. For example, a weathered discontinuity may have a wider opening, 

while a strong rock is expected to have a narrower aperture (Sari, 2009). Leu and Adi (2011) also 

proposed that it is more realistic to correlate geological parameters in ground classification because 

one parameter may depend on the status of the other parameters. 

Unfortunately, few studies have focused on the correlation among input parameters in rock 

mass or ground classification. The interdependencies among ground parameters are mostly 

overlooked, and it is assumed that all the input parameters are independent. However, 

dependencies among ground parameters can be critical to obtaining proper numerical results in 

engineering practice, particularly in probabilistic assessments and reliability analyses of 

geotechnical structures (Baecher and Christian, 2003; Wang and Akeju, 2016; Wang and Aladejare, 

2016). The significant effect of correlations between ground parameters on a reliability analysis 

and probabilistic design in underground construction has been highlighted (Li and Low, 2010; Lü 

and Low, 2011; Lü et al., 2011). If the correlation between input parameters in a probabilistic 

analysis is neglected, the estimated probability of failure may be severely underestimated or 

overestimated and might differ by orders of magnitude (Lü et al., 2012; Wang and Aladejare, 2016). 

Therefore, it is advisable to account for and appropriately quantify the negative correlation 

between the RQD and Jn in estimating the probability distribution of the Q value. 

4.4.5 Effects of distribution types of Q-parameters 

 To investigate the effect of the Q-parameters distribution types on the Q value and 

associated output parameters, different commonly used distribution types have been assigned, 

based on the relative frequency histogram in Scenario 1, to each Q-parameter. The uniform 

distribution in Scenario 2, also called the “noninformative priors” distribution, is commonly used 

when the available information is vague and only the bounds of the parameter are given. This 

distribution was also used to model all the input parameters in this case. The truncated triangular 

distribution, for which the typical range definition is adopted from Barton et al. (1974), is used in 

Scenario 15 and was also used to model each Q-parameter. The minimum and maximum values 

of the actual histogram data were used as the truncated values. Panthi (2006) used the truncated 

triangular distribution for the Q-parameters to simulate the rock mass quality Q in tunnels in 

regions of the Himalayas. In Scenario 16, the best fitting distributions relative to the histogram 

data for all the Q-parameters were obtained using the distribution fit function in the @RISK 
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program, the Kumaraswamy distribution for the RQD, triangular distribution for Jn, exponential 

distribution for Jr, inverse Gaussian distribution for Ja, triangular distribution for Jw and Pareto 

distribution for the SRF (Palisade Corporation, 2016). The simulation scenarios are shown in Table 

4.10 with combinations of different distribution types for the Q-parameters. The statistics for all 

the assumed distributions, including the minimum, maximum, mean, mode, and standard deviation, 

are taken from those estimated in the relative frequency histogram for each Q-parameter, as 

summarized in Table 4.4. All the scenarios were performed simultaneously using the MCS 

functions in the @RISK program. Latin hypercube sampling was used with a total of 10,000 

iterations. 

Table 4.10 Effect of the distribution types of the Q-parameters on the Q value, rock mass 

properties and displacement. 

 

Table 4.10 compares the generated mean and COV of the output parameters in all the scenarios 

with different distribution types. The simulation results from Scenarios 12, 6 and 3 are closest to 

the results from Scenario 1, which were generated by the actual relative frequency histograms. 

This is because the lognormal distributions, assumed for Jr and Ja in these three scenarios, are 

approximately closer to the actual histograms than to the other distribution types assumed in other 
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simulation scenarios. Although the best fit for Jr and Ja is an exponential distribution and an inverse 

Gaussian distribution, respectively, the lognormal distribution also captures the distribution 

characteristics of Jr and Ja, as shown in Figure 4.3 (c) and (d). Comparing the results generated in 

Scenarios 3, 6, 9 and 12, in which Jr and Ja are assumed to be lognormally distributed, the triangular 

distribution assumption for RQD in Scenario 12 performed best. This is because the distribution 

of the RQD is negatively skewed, as shown in Figure 4.3 (a), and the negatively skewed triangular 

distribution can better capture this type of data than the normal or lognormal distribution can. 

Barton and Grimstad (2014) stated that a lognormally distributed RQD with positive skewness is 

commonly found in “very poor” rock masses with a Q-range of 0.1−1, while a normally distributed 

RQD is found in “poor” rock masses with a Q-range of 1−4 and a negatively skewed RQD 

distribution is found in “fair” to “good” rock masses with a Q-range of 4−40. In the Shimizu case 

study, the average rock mass quality is “fair” with a mean value of 6.63, and the negatively skewed 

triangular RQD distribution in Scenario 12 matches better with the actual relative frequency 

histogram in Figure 4.3(a) than does the positively skewed lognormal distribution in Scenario 6 or 

the normal distribution in Scenario 3. It is also shown that in Scenario 2, in which all the input 

parameters are assumed to be uniformly distributed, a much smaller mean and a larger COV is 

generated than in Scenario 1. This demonstrates that Scenario 2, with a uniform distribution 

assumption, provides a greatly underestimated mean value with a larger variation. The triangular 

distribution without truncation in Scenario 14 achieves better results than the triangular 

distribution with truncations in Scenario 15. The best fit distribution used in Scenario 16 generates 

results closest to those generated from the actual relative frequency histograms of all the simulation 

scenarios used in Scenario 1. Thus, it is desirable to assign an appropriate distribution (e.g., best 

fit distribution) to each input parameter to generate more realistic results for the output parameters. 

If a theoretical distribution is well fitted to the empirical frequency data (e.g., the relative 

frequency histogram), then random samples can be drawn from the fitted distribution in the MCS 

(Fenton and Griffiths, 2008). A continuous probability distribution function, which has a scientific 

rationale and is mathematically or computationally tractable, is a useful tool in probabilistic risk 

analysis for addressing uncertainties and making informed decisions. The advantages of a 

probability distribution function over a relative frequency histogram are summarized by Fenton 

and Griffiths (2008): first, the irregularities, commonly encountered in the histogram due to a finite 

amount of sampled data, are smoothed by fitting a continuous distribution; second, the fitted 



 

101 

 

distribution can produce values outside the range of the finite sampled data, meaning that the 

effects of extreme values can also be taken into account; third, the fitted distribution has descriptive 

statistical parameters while the detailed fluctuations in a histogram will change if the interval sizes 

are changed; most notably, the fitted distribution also enables making estimations of stochastic 

model parameters and drawing inferences, which allows one to make probabilistic inferential 

statements for an entire site where data are limited or not available. 

If sufficient data are available, the distribution that best fits the histogram of the data should 

be selected. However, in rock engineering the subsurface information is often scarce, and only a 

limited number of samples in limited regions are used for estimating the rock mass quality in the 

site investigation stage (Fenton and Griffiths, 2008; Langford, 2013). Thus, it may be difficult or 

inappropriate to obtain the best fit distribution for such insufficient and incomplete frequency data. 

Fortunately, certain probability distribution models are found to be suitable for explicitly modeling 

the uncertainty or variability in some geological parameters, as reported by previous studies in the 

geotechnical literature (Adoko et al., 2013). For example, probabilistic models such as the normal, 

lognormal and beta distributions have been successfully utilized to describe the variability in rock 

and soil properties, including the UCS, elastic modulus, cohesion and friction angle based on an 

extensive literature review and case studies (Ang and Tang, 2007; Baecher and Christian, 2003; 

Fenton and Griffiths, 2008; Hoek, 1998a; Lacasse and Nadim, 1996; Lumb, 1970; Phoon and 

Kulhawy, 1999). Therefore, it is advisable to properly assume certain probability distribution types 

for the input parameters in the Q-system to realistically estimate the probability distribution of the 

Q value based on published literature and empirical experience. Additionally, the selected 

distributions should be as simple as possible while still reflecting the basic nature of the variability 

(Fenton and Griffiths, 2008). In the Shimizu study, the best fit for the RQD is the Kumaraswamy 

distribution, a Beta-like distribution, but it is not commonly used in geotechnical engineering. 

Instead, a negatively skewed triangular distribution, despite not being the best fit, matches the 

histogram data of the RQD well and can be used as an alternative. The triangular distribution of 

the RQD also generates similar results those of the best fit distribution. 

4.5 Conclusions 

An MCS-based uncertainty analysis framework for the Q-system has been developed to 

probabilistically assess the uncertainty in the Q-parameters and its effect on the Q value and 
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associated rock mass parameters. A case study of the Shimizu highway tunnel was adopted to 

implement the proposed framework. Based on the analysis and discussion of the obtained results, 

it is concluded that the MCS-based probabilistic analysis allows for the quantitative 

characterization of uncertainty and variability in the input parameters and its impact on the output 

parameters. The probabilistic distribution of the Q value was obtained with the MCS technique 

based on relative frequency histograms of the input parameters. The MCS-derived Q statistics are 

more reasonable than the conventional estimation results using the interval analysis. The former 

can more realistically take into account the correlations in input parameters in the estimation as 

well as providing the full probabilistic distribution of the Q value, while the estimation in the latter 

approach is based on assumptions of perfect correlations which are rarely met in practice. Based 

on the empirical correlations between rock mass parameters and the Q value, probabilistic 

estimates of the rock mass parameters can be obtained, which can also be used as inputs to 

numerical models for stress analysis and stability assessment. Caution should be exercised when 

selecting appropriate empirical correlations during the probabilistic calculation process. In this 

case study, the empirically estimated probabilistic tunnel displacement, obtained by the Barton 

approach, generally agreed well with that generated from the probabilistic analysis of the FEM 

RS2 numerical model with the PEM and MCS sampling techniques. 

In addition, the results of the uncertainty analysis of the probabilistic Q-system suggest that 

the probabilistic sensitivity analysis provides a quantitative ranking of the impact of the input 

distributions of Q-parameters on the Q value. Different from traditional one-way sensitivity 

analysis, the probabilistic sensitivity analysis is a multi-factor analysis technique, in which the 

distributions of input parameters are taken into account and simultaneous variations of all the input 

parameters are allowed. Probabilistic sensitivity analysis results obtained in the MCS process 

generally agreed well with those derived from other sensitivity analysis techniques in this case 

study; the mean and variation of the Q value and the associated rock mass parameters have been 

underestimated if the negative correlation is not modeled in this case study. For the probabilistic 

assessment of the Q value and associated rock mass parameters, it is advisable to select appropriate 

distribution types for uncertain Q-parameters when insufficient input parameter data are available. 

The selection of proper distributions for input parameters is vital and should be conducted by 

combining site knowledge, local experience, and professional judgment. 
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The proposed framework of the MCS-based uncertainty analysis in the probabilistic Q-system 

provides an approach for systematically assessing the uncertainty in the rock mass quality and its 

propagation to rock mass characterization and ground response evaluation by applying the MCS 

technique with appropriate empirical correlations. The probabilistic sensitivity analysis in the 

MCS process can also be performed to identify the most influential input parameters in conjunction 

with traditional one-way sensitivity analysis techniques. The framework are helpful in providing 

insightful information for the probabilistic evaluation of ground responses and rock support 

performance of underground structures. 
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CHAPTER 5  

RELIABILITY EVALUATION OF STABILITY FOR UNDERGROUND EXCAVATIONS 

USING AN EMPIRICAL APPROACH 

5.1 Abstract  

The critical strain concept has been widely used in analytical or numerical approaches to 

evaluate the stability of underground excavations with a strain-based failure criterion. However, 

analytical solutions are often based on simplistic assumptions and numerical procedures are 

generally computationally expensive, in which deterministic critical strain values are often used. 

To address this issue, reliability assessment using an empirical approach has been performed for 

the preliminary evaluation on the excavation stability with the First Order Reliability Method 

(FORM) algorithm. The probabilistic critical strain, which takes into account uncertainties in rock 

mass parameters, and the tunnel strain empirically estimated based on the rock mass classification 

Q index were incorporated in the limit state function for reliability evaluation. Monte Carlo 

simulation was also conducted for comparing the reliability analysis results with that derived from 

the FORM algorithm. A highway tunnel case study was utilized as an example to perform 

reliability evaluation on the excavation stability. The probabilistic sensitivity analysis has been 

carried out to identify the most influential parameter. The effects of the correlation, distribution 

types and coefficient of variation in input parameters on the reliability have also been investigated. 

The reliability analysis results show that the tunnel is not expected to experience instability after 

excavation. The excavation stability has also been evaluated using analytical and numerical 

approaches, and obtained results were consistent with that derived from the reliability assessment, 

which has also verified the effectiveness of the reliability-based evaluation on excavation stability 

using the empirical approach. Thus, reliability assessment using the FORM algorithm with the Q-

based empirical approach can be used as a complement to analytical and numerical approaches for 

the preliminary evaluation of the stability of underground excavations. 

5.2 Introduction 

Uncertainty is inevitable in engineering geology, and inherent uncertainty in geologic 

conditions and geotechnical parameters plays a key role in the field of geotechnical engineering, 

including the construction of underground structures. Evaluation and consideration of uncertainty 
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have becoming an increasingly important part in the engineering design and construction (Einstein 

and Baecher, 1982). However, traditional deterministic design methods inadequately deal with the 

inherent uncertainty and variability, and this may result in over- or under-design of underground 

structures and associated risks. For example, in the traditional allowable stress design (ASD) 

approach, only the expected case is discussed and an overall margin of safety is applied. The ASD 

also does not consider the effects of actual variabilities in load and strength and insufficiently 

provides the level of site understanding on the probability of failure (Fenton and Griffiths, 2008). 

Fortunately, a more quantitative and systemic approach with the use of probability, statistics and 

reliability can provide rational analysis of uncertainty and complement the traditional deterministic 

approaches (Einstein and Baecher, 1982). 

Reliability assessment represents a rational method to describe design risks by directly 

quantifying uncertainties in input parameters in the design process (Langford, 2013). It is capable 

of systematically quantifying safety risks and is regarded as a useful tool in solving challenging 

geotechnical engineering problems subjected to inherent uncertainty and variability (Zhang and 

Goh, 2018). Reliability approaches also provide a more consistent and complete measure of the 

risk level since they not only consider the expected case but also offer a measure of design 

performance based on the reliability index or probability of failure (Langford, 2013). Reliability-

based design approaches, including the load resistance factor design within a probabilistic 

framework, have been widely used in evaluating the reliability and risk level in geotechnical 

engineering. Despite its benefits, the reliability analysis in the geotechnical engineering field has 

been focused on surface and gravity-driven geotechnical projects where loads and resistances can 

be dealt with separately. It has not yet achieved widespread use in the design of underground 

construction, and this is attributed to the complex ground-support interaction since the system 

performance is dependent on interdependency among rock loads, deformation and support 

resistance (Langford, 2013). The load and resistance are difficult to differentiate in underground 

construction since the rock mass itself both acts both as the load and support resistance. Thus, it is 

not appropriate to independently separate the loads and resistances in underground construction in 

a performance function, which is often used to define the acceptance criterion for the system 

performance. Instead, the limit state function that is defined with respect to a limiting value for 

rock mass response is generally taken as the performance function. Accordingly, the probability 
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of failure, which refers to the violation of the limit state, can be calculated as the likelihood of 

exceeding of a prescribed limit state. 

The limit states with regard to the stability evaluation of underground structures can be mainly 

described by the stress-based failure criteria and strain-based failure criteria. As for the stress-

based failure criteria, Li (1990) stated that the in-situ stresses are generally not directly measurable 

and are converted from the displacement or strain through behavior equations. It was also pointed 

out that the conversion is normally based on assumptions such as the plane stress condition and 

Hooke’s law, which rarely represents actual in-situ conditions and rock mass properties. In 

addition, the strength parameters of rock masses in the stress-based failure criteria are often 

difficult to obtain since the in-situ tests are expensive and time-consuming (Hoek, 2007). Moreover, 

Sakurai (2017) presented that the stress-based yielding criteria, which are used in elasto-plastic 

analysis for stability assessment of geo-structures, lead to calculated stress levels that never go 

beyond the yield point. As a result, the stress keeps constant while the strain increase beyond the 

yielding point till failure, which implies the failure criteria to some extent should be defined in 

terms of strain. It is also stated that the apparent factor of safety, defined in terms of stress, will 

always be one as the stress state in a plastic zone cannot exceed the yield stress point. In these 

scenarios, however, tunnels may still be adequately stable as the plastic zone or failure region is 

always surrounded by stable elastic zone (Sakurai, 2017). In contrast, the advantages of strain-

based failure criteria have been summarized over the stress-based failure criteria (Gaede et al., 

2014): the consideration of both elastic and inelastic strain, the direct and observable effects 

instead of inferred effects, and the ability of modeling complete stress-strain curves. The 

displacement or percent strain is also more practical and easier to measure in underground 

construction. Based on these reasons, strain-based failure criteria are of particular interests and 

have been widely applied in the underground design and construction (Daraei and Zare, 2018; Fujii 

et al., 1998; Hoek, 1998b; Li and Villaescusa, 2005; Li et al., 2000; Li, 1990; Sakurai, 1981; Singh 

et al., 2007; Stacey, 1981). 

In recent decades, numerous researchers have employed limit state functions with strain-based 

failure criteria using the First Order Reliability Method (FORM) or Monte Carlo simulation (MCS) 

techniques to evaluate the reliability of underground excavations, and productive results have been 

achieved (Li and Low, 2010; Liu and Low, 2017; Lü et al., 2012; Lü and Low, 2011; Lü et al., 

2011; Song et al., 2016). Among these reliability evaluations, analytical expressions based on the 
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ground-support interaction in circular tunnels were used to construct the performance function (Li 

and Low, 2010; Su et al., 2011). However, the analytical solution was basically derived with 

assumptions of a circular tunnel in isotropic and homogeneous ground subjected to hydrostatic 

stress with uniform internal support pressure. These assumed conditions in the analytical solution 

are ideal and seldom met in the practice of underground excavation. Alternatively, numerical 

procedures with finite element or finite difference models using different algorithms were 

developed to implicitly approximate the strain-based performance function for the tunnel 

reliability assessment, including the response surface method (RSM) (Hamrouni et al., 2017; Lü 

and Low, 2011; Lü et al., 2011; Mollon et al., 2009b, 2010), Regression Method (Basarir, 2008; 

Goh and Zhang, 2012; Zhang and Goh, 2015; Zhang and Goh, 2012; Zhu et al., 2008), Artificial 

Neural Network (Adoko et al., 2013; Goh and Zhang, 2012; Lü et al., 2012; Mahdevari and Torabi, 

2012; Rafiai and Moosavi, 2012), Support Vector Machine (Tan et al., 2011; Zhao, 2008; Zhao et 

al., 2014) and Augmented Radial Basis Function (Bai et al., 2012; Fang et al., 2005; Wang et al., 

2016). Reliability approaches, including the First Order Second Moment method, Point Estimate 

Method, FORM and MCS techniques, have been used to perform reliability analysis based on 

these implicitly constructed performance functions with satisfactory results achieved. It should be 

noted, however, that the numerical procedures are generally computationally expensive, which 

requires a great number of numerical experimentations or iterations. Actually, in addition to the 

analytically or numerically derived performance functions, there are some empirical correlations 

related to the displacement or percent strain based on collected case histories of underground 

excavations (Barton, 2002; Barton et al., 1994; Chern et al., 1998a; Chern et al., 1998b; Hoek, 

1999; Hoek, 2001; Sakurai, 1983) which are useful in the preliminary evaluation of excavation 

stability. Nevertheless, few attempts have been made to adopt the empirically derived performance 

function with the strain-based failure criterion to assess the reliability and risk levels of 

underground excavations. In addition, in regard to reliability evaluations using both the simplistic 

analytical solution and sophisticated numerical procedures, as mentioned above, the focus was 

primarily the illustration of proposed analysis approaches or numerical algorithms, and 

hypothetical examples with assumed statistical moments of rock mass parameters were mostly 

used. In other words, few case studies with real statistical data of rock mass properties have been 

utilized to verify the validity of proposed approaches or algorithms. Moreover, single deterministic 
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limiting strain values were subjectively determined and used in the strain-based performance 

functions, and the uncertainties involved were not accounted for. 

To address these issues, in this chapter, reliability assessment using the FORM algorithm, 

which incorporates probabilistic critical strain and the Q-based empirically estimated tunnel strain, 

has been carried out. The reliability-based assessment allows for the consideration of inherent 

uncertainties in rock masses and has been applied in the preliminary evaluation of the excavation 

stability of the Shimizu highway tunnel case study.  

5.3 Methodology 

5.3.1 Reliability index 

Reliability analysis deals with the relation between the loads a system must carry and its 

capacity to carry those loads (Baecher and Christian, 2003). Hasofer and Lind (1974) proposed an 

approach known as geometric reliability or the FORM to analyze the reliability of a system. The 

matrix formulation of the FORM for uncorrelated normal parameters can be found in the literature 

(Ditlevsen, 1981; Hasofer and Lind, 1974). Low and Tang (1997) proposed a practical approach 

with the optimization features using the spreadsheet to calculate the reliability index. In this 

approach, an alternative interpretation of the reliability index is performed based on an expanding 

ellipsoid in the original space of the basic random variables, and the reliability index can be 

expressed as (Low and Tang, 1997): 
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where xi is the original normal variable, R is the correlation matrix among input parameters, i  

and i  are the mean and standard deviation of random variable ix , respectively, and F is the 

failure domain. For correlated non-normal input parameters, the equivalent normal mean and 

standard deviation should be used, and the reliability index can be calculated as (Low and Tang, 

2004): 
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where i N and i N are the equivalent normal mean and standard deviation of non-normal 

random variable ix , respectively. The equivalent normal mean and standard deviation values for 
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non-normal random variables can be computed using the Rackwitz and Flessler (1978) two-

parameter equivalent normal transformation or other transformation techniques. 

In the framework of the FORM algorithm using the spreadsheet, the design point is a point 

on the boundary (the limit state surface) that separates safe combinations of parametric values from 

the unsafe combinations. The design point is the most probable failure combination of parametric 

values (Low, 2008b). In reliability analysis using FORM, the uncertainties and correlation 

structure of the parameters are represented by a one-standard deviation dispersion ellipsoid 

centered at the mean-value point, as shown in Figure 5.1. The safety is expressed by a reliability 

index which is the shortest distance (measured in units of directional standard deviations, R/r) from 

the mean-value point to the most probable failure combination of parameters (“the design point”) 

on the limit state surface (Low, 2018; Low, 2008b). For more information about the constrained 

optimization approach from the ellipsoidal perspective, the literature (Low, 2018; Low and Tang, 

1997, 2007; Low, 2008b; Low and Tang, 2004) can be referred to. Based on the reliability index, 

the probability of failure can be evaluated by (Baecher and Christian, 2003): 

1 ( )fp  −         (5.3) 

where fp  is the probability of failure, ( )   is the cumulative distribution function of the standard 

normal variable.  

 

Figure 5.1 Design point and equivalent ellipsoids (modified from Low and Tang, 2004) 



 

110 

 

A new efficient spreadsheet algorithm for the FORM was proposed and expressed as 

follows (Low and Tang, 2007): 

1min [ ] [ ]T

x F
n R n −


=      (5.4)  

1[ ( )]
N

i i
i iN

i

x
n F x





−−
= =       (5.5) 

where n is a column vector of ni; when the value of ni is varied during the constrained optimization, 

the corresponding value of xi is automatically calculated; F is the non-normal cumulative 

probability distribution at xi; ( in ) is the cumulative distribution function of the standard normal 

variable ni. 

The reliability index as expressed in Eq. (5.4) can be calculated using the FORM algorithm 

by the Excel’s built-in optimization routine “Solver”, subjected to the constraint that the 

performance function G(X)=0, where the x values are calculated from Eq. (5.4), and by 

automatically changing the values of ni.  

5.3.2 Reliability analysis with the critical strain-based limit state function 

The implementation procedures of the critical strain-based reliability analysis of the tunnel 

using the FORM algorithm are shown as follows: 

(1) Establish critical strain-based limit state function  

The estimated strain is a function of the Q value using the Barton (2002) estimation 

approach. Thus, the limit state function can be expressed as follows: 

( ) ( )CG X Q = −        (5.6) 

       0( ) C vG X R= −                (5.7) 
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where G(X) is the performance function of the system, C is the critical strain; v  is the vertical 

displacement (in units of mm); SPAN is the tunnel span (in units of mm); v  is the vertical stress; 

ci is the uniaxial compressive strength of intact rock; R0 is the tunnel radius. 
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In terms of the critical strain, it can be treated as a deterministic value or a random variable. 

In the case of deterministic critical strain, the critical strain is set to certain single value (e.g. 0.5%, 

1%). If the critical strain is viewed as a random variable, it can be calculated, according to the 

critical strain concept proposed by Sakurai (1981), as the ratio of the UCS over the elastic modulus 

of rock mass, which is as follows: 

cm
C

mE


 =       (5.10) 

exp(0.6log 2)
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100 100exp(0.8625log 2.875)
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 

−
= − = −

−
  (5.11) 

where cm  is the UCS of rock mass, mE  is the elastic modulus of rock mass. c is the uniaxial 

compressive strength of intact rock; Ei is the elastic modulus of intact rock.  

(2) Reliability analysis using the FORM spreadsheet 

Once the critical strain-based limit state function is determined, the reliability analysis can be 

performed using the FORM spreadsheet, and the reliability index and the probability of failure can 

be obtained.  

5.4 Reliability analysis with deterministic critical strain 

5.4.1 The concept of critical strain 

In underground excavations, there are mainly two failure mechanisms, i.e. stress-controlled 

failure mechanism due to the excavation-induced stresses and structurally-controlled failure 

mechanism caused by intersecting discontinuities (Li and Low, 2010). In this study, the stress-

induced failure mechanism is investigated. The critical strain is normally required to evaluate the 

tunnel deformation before excavation. The concept of critical strain was introduced by Sakurai 

(1981) and is defined as the ratio of strength to the Young’s modulus of rock. It can be used as the 

limiting strain and is interpreted as the strain value above which instability problems are likely to 

occur. The critical strain is always smaller than the failure strain or the peak strain on the stress-

strain curve, thus it may be used as a warning strain level which can guarantee the structural safety 

(Sakurai, 1981). This also implies that if the predicted tunnel strain is below the critical strain, then 

the tunnel will be stable during the excavation process. The concept of critical strain has been 

extensively reviewed by Li (2004) based on laboratory tests on intact rock samples, and the critical 

strain is re-evaluated considering three typical stress-strain relationships of rocks, i.e. elastic 
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behavior, elastic-plastic behavior and plastic-elastic-plastic behavior. With regard to rocks with 

the plastic-elastic-plastic behavior, the modified tangential modulus is used using the axis 

translation technique instead of the initial tangential modulus considering the initial plastic 

deformation at the beginning of loading. This can greatly reduce the conservativeness caused by 

the use of the initial tangential modulus and more realistically reflect the deformational behavior 

of rocks (Daraei and Zare, 2018; Li, 2004).  

Based on field observations and measurements, Sakurai (1983) suggested the critical strain 

value of 1% since the onset of tunnel instability with support problems took place when the tunnel 

strain was larger than approximately 1%. Field observations by Chern et al. (1998b) and Hoek 

(2001) confirmed the critical strain value of 1%. Hoek (1999) also defined the critical strain value 

of 2% as the boundary between stable tunnels requiring minimal support and unstable tunnels 

necessitating special support. However, it should be noted that some tunnels which have 

experienced strains as high as 5% did not show stability problems (Hoek, 2001). Hoek (2001) also 

presented that it is allowable for tunnels within squeezing conditions to suffer strains as much as 

5% before the activation of the tunnel support. Thus, there is no universally accepted critical strain 

value and the critical strain is dependent on the ground characteristics and in-situ stress levels in 

different cases. 

In this study, a critical strain-based performance function is empirically established, and 

the Shimizu highway tunnel case is illustrated as an example to perform the reliability analysis. 

Table 5.1 summarizes the statistical moments of relevant parameters for the Shimizu tunnel. Table 

5.2 compares the estimates of the mean critical strain value using different calculations 

summarized from literatures. Eq. (5.10) is the definition of the critical strain. Other equations are 

the extension of the critical strain concept based on results obtained from laboratory tests, physical 

modeling tests, empirical correlations, and field observations or measurements. The mean values 

are also given for the tunnel strain at the tunnel crown derived from the numerical calculation with 

RS2 modeling and from the empirical Barton approach (Barton, 2002) in Table 5.2 for comparison 

purpose. The obtained critical strain values are different, varying from about 0.3% to 2%. This 

may be due to the fact that these equations, based on which the critical values are calculated, are 

derived from case histories or numerical studies with different ground characteristics. Thus, the 

determination of the single critical strain value of rock mass is not an easy task and caution should 

be exercised. The site knowledge, local experience, and engineering judgement should be 
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combined to determine the critical strain value based on some numerical calculations or field 

measurements. 

Table 5.1 Summary of statistics of parameters in the Shimizu tunnel case study. 

  Parameters 

Statistics 
SPAN 

 (m) 

HEIGHT  

(m) 
Q 

Intact 

UCS 

σc 

(MPa) 

Intact 

elastic 

modulus  

Ei (GPa) 

Rock mass 

UCS 

σcm (MPa) 

Rock mass 

elastic 

modulus  

Em (GPa) 

Distribution  N/A N/A Lognormal Normal Lognormal Lognormal Lognormal 

Mean  18 12 6.63 49 10.2 9.62 1.01 

SD 0 0 7.52 9.66 1.6 3.62 0.47 

Table 5.2 Summarized critical strain estimated using different approaches. 
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5.4.2 Critical strain for intact rock and rock mass 

The relationships between critical strain and uniaxial compressive strength (UCS) as well 

as Young’s modulus of rocks and soils are summarized by (Sakurai, 2017), as seen in Figure 5.2. 

Note that these relationships were established originally based on laboratory tests on rocks and 

soils, however, Sakurai (1983) pointed out that the critical strain of in-situ rock mass is almost the 

same order of magnitude as that of intact rocks based on in-situ tests (plate bearing tests and direct 

shear tests) and back-calculations in rock masses. The critical strain for rock masses also falls 

within the bounds shown in Figure 5.2 since the effects of joins are canceled out by taking the ratio 

of the strength to the elastic modulus of rock mass (Sakurai, 1997). The hazard waring levels were 

also proposed in the critical strain chart for preliminary evaluation of the stability of tunnels prior 

to the start of tunnel excavation, which have three stages depending on the degree of stability. As 

can be seen in Table 5.2 (A), the warning level III is the upper bound of the strain, above which 

many different types of excavation problems are likely to occur; the warning level I is the lower 

bound, below which tunnels are stable without excavation problems; and the warning level II in 

between is the centerline between warning level I (lower bound) and warning level III (upper 

bound). The upper bound and lower bound are also shown in Table 5.2 (B) in terms of the 

relationship between critical strain and elastic modulus. 

Based on the relationships shown in Figure 5.2, the hazard warning levels were estimated 

using the strength and elastic moduli of intact rocks and rock mass in the Shimizu tunnel case, as 

marked in Figure 5.2. The obtained hazard warning levels of critical strain are summarized in 

Table 5.3. The critical strain values for intact rocks vary from about 0.1% to 0.8% based on the 

intact UCS and elastic modulus according to Figure 5.2. In contrast, the critical strain values for 

the rock mass are in the range of about 0.2% to about 1.5% based on the rock mass UCS and elastic 

modulus values. Thus, it reveals that the critical strain values estimated for the rock mass are about 

2 times that for intact rocks in this case study. 

 Sakurai (1997) stated that the critical strain of the rock mass is always greater (1 to 3 times 

more) than that for intact rocks. Based on this, it is also suggested that the critical strain obtained 

from intact rocks can be used as the permissible strain for rock mass since a certain amount of 

safety allowance can be guaranteed. However, Daraei and Zare (2019) pointed out that the use of 

critical strain derived from intact rocks is too conservative due to the following reasons: first, there 

is a scale effect between rock mass and intact rocks and the critical strain for rock mass is about 1  
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Figure 5.2 Relationship between critical strain and rock properties (Sakurai, 2017; Sakurai, 

1997): (A) critical strain vs. UCS; (B) critical strain vs. elastic modulus 

to 3 times that for the intact rock as noted by Sakurai (1997). Thus, a sufficient safety factor (1 to 

3) has already been automatically taken into account due to this scale effect. Especially for rocks 

with the plastic-elastic-plastic behavior, critical strain values estimated from intact rocks can be 

considerably smaller than those for rock masses. If these critical strain values for intact rocks are 

used in evaluating the excavation stability in rock masses, over-conservativeness will be 

encountered. In addition, the difference between the critical strain and failure strain at the peak 

strength should also be considered in intact rocks. The failure strain of intact rocks will be 1 to 5 

times the critical strain, indicating another safety factor is also included in the critical strain 
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criterion (Daraei and Zare, 2018). Thus, the critical strain determined from intact rocks should not 

be directly used for rock masses to avoid over-conservatism. Instead, to lessen the 

conservativeness and more realistically capture the characteristics of rock mass, the critical strain 

for rock mass should be estimated based on the mechanical properties of the rock mass itself. Since 

the in-situ tests for directly estimating the rock mass properties are expensive and time-consuming, 

empirical rock mass classifications can be used as an alternative to provide initial estimates of rock 

mass properties.  

Table 5.3 Comparison of critical strain estimated using intact and rock mass properties. 

Rock property 

index 

Critical strain (%) 

Upper bound Mean Lower bound 

σc 0.65 0.25 0.093 

σcm 1.27 0.48 0.20 

Ei 0.81   0.14 

Em 1.46   0.25 

5.4.3 Effects of deterministic critical strains on the reliability 

To investigate the effects of critical strain values on the tunnel reliability, performance 

functions with different deterministic critical strain values were used within the FORM framework. 

Figure 5.3 illustrates the FORM example with a critical strain value of 1%. The input parameters, 

including the Q index, the UCS of intact rocks, and the vertical stress, were treated random 

variables with respective statistical moments. The UCS of intact rocks was assumed to follow a 

normal distribution and the standard deviation was estimated using 3 sigma rule (Duncan, 2000; 

Hoek, 1998a; Sari, 2009; Tiwari et al., 2017). The vertical stress was also assumed to be normally 

distributed, and the COV was assumed 25% based on published data in literature and practice (Cai, 

2011; Hadjigeorgiou and Harrison, 2011; Lü et al., 2013; Şen and Sadagah, 2002). In the FORM 

spreadsheet shown in Figure 5.3, the reliability index value was calculated as 2.575 and the 

estimated probability of failure is 0.5%. For comparison, the MCS technique was also carried out 

to directly estimate the probability of failure, which is the likelihood that the performance function 

value is no greater than zero. 
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Figure 5.3 FORM spreadsheet with deterministic critical strain. 

Figure 5.4 shows the effects of critical strain values on the reliability index and probability 

of failure. The reliability index increases while the probability of failure decreases with the 

increase of critical strain values. Note that the reliability index is negative and the probability of 

failure is greater than 50% when the critical strain value is less than 0.1%. The performance 

function values under these circumstances are negative at mean values of input parameters, 

indicating that the mean-value points are already inside the failure region (Low, 2008b). The 

resultant reliability index is negative and correspondingly the probability of failure is greater than 

50%. Results in Figure 5.4 (B) also reveal that the probability of failure results calculated from the 

MCS technique are in good agreement with that estimated from the FORM approach, which also 

verifies the accuracy of the FORM approach. The good agreement achieved between the FORM 

and MCS approaches has also been previously reported in reliability analysis results in the field of 

geotechnical engineering (Jimenez-Rodriguez and Sitar, 2007; Li and Low, 2010; Low and 

Einstein, 2013; Lü et al., 2012; Lü and Low, 2011; Lü et al., 2011). 

5.4.4 Sensitivity analysis with deterministic critical strain 

In the FORM spreadsheet, the design point values are determined automatically for each input 

parameter and can reflect sensitivities of the performance function to all the input parameters (Low, 

2008a). The ni values, as calculated by Eq. (5.5), are standard normal variables, which provide a  
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Figure 5.4 Effects of the critical strain on the reliability: (A) reliability index; (B) probability of 

failure 

measure of relative parametric sensitivity. The greater the ni value for an input parameter is, the 

farther the design point is from the mean value point, and thus the more significant the input 

parameter is. It is clearly seen in the ni column in Figure 5.3 that the ni value for the Q index is the 

largest, followed by the vertical stress and the UCS. Using the MCS technique, the sensitivities of 

input distributions can also be obtained with tornado graphs. Figure 5.5 illustrates the rank of 

relative importance of input parameters in tornado graphs derived from the regression analysis in 

the MCS process. The input parameter Q index is the most important, followed by the verticalstress 

and the UCS, which is consistent with the sensitivity results derived from ni values in the FORM 

spreadsheet. 
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Figure 5.5 The rank of relative importance of input parameters: (A) ranked by regression 

coefficient; (B) ranked by the contribution to variance 

5.4.5 Probability density function of the estimated strain 

The effects of distribution types of Q-parameters on the probability density function (PDF) 

of the estimated strain were also studied using the MCS technique. The distribution effects of Q-

parameters RQD, Jr and Ja are focused in this study with different distribution types assigned, while 

other Q-parameters Jn, Jw and SRF are assumed triangularly distributed. According to the 

summarized commonly used distribution types for RQD, Jr and Ja parameters, as mentioned in 

Section 3.4.7 in Chapter 3, three distribution types were assigned, i.e. normal, lognormal and 

triangular distributions for RQD, Jr and Ja parameters. The scenario with histograms of the relative 

frequency data for all the Q-parameters was also included for comparison.  

Figure 5.6 compares the estimated PDFs of tunnel strain with different distribution 

assumptions. The scenario with histogram frequency data generated the smallest statistical 

moments (mean of 0.32%, standard deviation of 0.41%). This indicates that the obtained strain 

values are overestimated under other distribution assumptions, thus being conservative. Results 

also show that the scenario with the lognormal distribution assumption generates results closest to 

that derived from the histogram frequency data. This is because that Ja is the second most important 

input parameter (the SRF parameter is most significant with the assumed triangular distribution in 

all scenarios), as can be seen in Section 4.4.3, and that the lognormal distribution is a better fit for 

Ja compared to other distributions (normal distribution and triangular distribution). It was also 

reported by Lu et al. (2019) that scenarios with lognormally distributed Jr and Ja parameters 

produced better estimates of the Q value and associated rock mass parameters in the Shimizu 

tunnel case study. Thus, it is of great significance to identify the most influential input parameters 
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using sensitivity analysis and assign appropriate distribution types since variations in these 

important input parameters contribute the most to the overall uncertainty of the output parameter.  

 

Figure 5.6 Comparison of PDFs of estimated strain. 

It is also observed that the scenario with the normal distribution assignment generates PDF 

of estimated strain with greater mean and standard deviation than that of the lognormal distribution 

scenario. This phenomenon can be explained as follows: the lognormally distributed parameter Ja, 

one of the most influential parameters, with positive skewness, leads to a higher probability of 

smaller Ja values being sampled in the MCS process than that in the scenario of non-skewed 

normally distributed Ja. As a result, larger Q values are more likely to be calculated, meaning 

better rock mass quality, in the scenario with the lognormally distributed Ja parameter. This also 

results in a smaller mean value of the estimated tunnel strain in the lognormal distribution scenario 

than in the normal distribution scenario, indicating the conservativeness of the normal distribution 

assumption. The greater conservativeness achieved in the normal distribution assumption than in 

the non-normal distributions for rock mass input parameters has also been reported by numerous 

researchers in the analyses of underground structures, which includes scenarios of rock mass input 

parameters of cohesion, friction angle and deformation modulus of Mohr-Coulomb material 

(Hamrouni et al., 2017; Li and Low, 2010; Lü and Low, 2011; Lü et al., 2011), input parameters 

of GSI, the constant mi, the disturbance factor D and intact UCS of Hoek Brown material (Pan and 

Dias, 2018; Zeng et al., 2014), or input parameters of rock mass strength, deformation modulus, 
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Hoek-Brown criterion parameter m and dilation angle (Song et al., 2016). It is also found in Figure 

5.6 that the scenario with triangular distribution assignment has the largest statistics of estimated 

strain, generating the greatest differences compared to the results obtained from the histogram 

scenario. This implies that the triangular distribution might not be suggested for use despite the 

relative ease and simplicity in defining the distribution (min, most likely and max).  

5.4.6 Effects of correlation between RQD and Jn on the reliability 

The effects of the negative correlation between RQD and Jn on the reliability were also 

studied. Figure 5.7 describes the variation of the reliability index and the probability of failure with 

the changes of correlation coefficient between RQD and Jn. Results show that the lower safety 

levels are achieved, represented by lower reliability index and higher probability of failure, with 

stronger correlation between RQD and Jn. This indicates that the level of safety and reliability is 

overestimated if the negative correlation is neglected. Recall that the greater mean of the Q value 

is achieved with the stronger correlation between RQD and Jn, as mentioned in Section 3.4.6 in 

Chapter 3 and Section 4.4.5 in Chapter 4, and this may lead to better rock mass quality as well as 

higher reliability level. It should be noted, however, that the standard deviation and the COV which 

are the measure of variation also become greater with stronger correlation between RQD and Jn. 

As mentioned in Section 4.4.5 in Chapter 4, the standard deviation and COV are more sensitive to 

the correlation between RQD and Jn compared to the mean values. Thus, it is indicated that the 

dispersion in the derived distribution of the Q value may have greater effects on the overall level 

of safety and reliability than the mean value.  
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Figure 5.7 Effects of correlation between RQD and Jn on reliability: (A) reliability index; (B) 

probability of failure 

The reliability index decreases from 2.575 to 2.495 and the corresponding probability of 

failure increases from 0.5% to 0.63% when the correlation coefficient varies from 0 to -1.The 

sensitivity indices, as introduced in Section 4.3.4 in Chapter 4, were also calculated to assess the 

sensitivity of both the reliability index and the probability of failure to the correlation coefficient. 

Results show the obtained sensitivity indices are 3.1% and 20.4% for the reliability index and the 

probability of failure, respectively. This indicates that the negative correlation between RQD and 

Jn has greater impact on the probability of failure than on the reliability index in this Shimizu 

tunnel case.  

5.5 Reliability analysis with probabilistic critical strain 

5.5.1 Performance function based on probabilistic critical strain 

In Section 5.4, deterministic critical strain values were used in the performance function 

for conducting the reliability analysis. However, the uncertainties involved in the selection of the 

critical strain values are not considered. The probabilistic critical strain, which enables the 

consideration of inherent uncertainties in rock mass parameters, is capable of overcoming the 

difficulty when choosing the appropriate single critical strain value in the deterministic critical 

strain approach. The following study will introduce the probabilistic critical strain into the 

calculation. Uncertainties in the critical strain, according to the definition of the critical strain, are 

derived from the uncertainties in the rock mass strength and elastic modulus of rock mass. As 
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mentioned in Section 4.3.2 in Chapter 4, the normalized estimation approach with the 

consideration of intact rock properties works well in estimating the strength and elastic modulus 

of rock mass, and the rock mass properties estimated using this approach were adopted to calculate 

the critical strain. Figure 5.8 illustrates the FORM spreadsheet with probabilistic critical strain in 

the limit state function. 

 

Figure 5.8 FORM spreadsheet with probabilistic critical strain. 

In the FORM spreadsheet in Figure 5.8, the input parameters are the Q index, the intact 

UCS, the intact elastic modulus, and the vertical stress. As mentioned in Section 5.4.3, the intact 

UCS was assumed to be normally distributed and the standard deviation was estimated using 3 

sigma rule. Similarly, the intact elastic modulus was assumed to follow lognormal distribution and 

the standard deviation was also estimated using 3 sigma rule (Tiwari et al., 2017). Based on 

laboratory tests on intact rock samples in the Shimizu tunnel case study, the intact UCS and elastic 

modulus data was collected, and the correlation coefficient between the UCS and elastic modulus 

was determined to be 0.67, as depicted in Figure 5.9. The correlation coefficient between the intact 

UCS and elastic modulus was considered in the correlation matrix in the reliability analysis shown 

in Figure 5.8. The obtained reliability index is 2.778 and the corresponding probability of failure 

is 0.27%. Figure 5.10 illustrates the PDF of the estimated critical strain, in which the statistical 
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moments and the 90% confidence interval are also listed. The critical strain is a random variable 

with the mean value of 1.04% and the standard deviation of 0.31%. 

 

 

Figure 5.9 The positive correlation between UCS and elastic modulus of intact rock: (A) original 

data set; (B) normalized data set 

Reliability analysis with the probabilistic critical strain has also been conducted using the 

MCS technique with 50,000 iterations. The obtained probability of failure is 0.28%, which also 

agrees well with the value of 0.27% derived from the FORM results. This also confirms the 

agreement of reliability results derived from the FORM algorithm and the MCS simulations. 
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Figure 5.10 The distribution of critical strain. 

5.5.2 Sensitivity analysis with probabilistic critical strain 

Sensitivity analysis has also been carried out during the MCS process and Figure 5.11 

shows the sensitivity analysis results with tornado graph displaying relative importance of input 

parameters. Results show that the intact UCS is the most influential input parameter based on the 

regression analysis. The ranking criteria of the regression coefficient and the contribution to 

variance demonstrate the same ranking order, and the intact UCS and elastic modulus are more 

significant than the Q index and the vertical stress. This is because the results ranked by the 

regression coefficient and the contribution to variance of output were both obtained in the 

regression analysis. In contrast, according to the ni column in the FORM spreadsheet in Figure 5.8, 

the Q index has the largest effects on the reliability, followed by the intact UCS, the vertical stress 

and intact elastic modulus. The ranking order is different to that generated from the MCS process. 

This may be caused by the complicated performance function, in which the input parameters Q 

index and the intact UCS are involved in both the first and second terms in the limit state function. 

Due to the non-linear performance function in this study, the limit state surface at the design point 

may be non-linear. Under this circumstance, the FORM algorithm might not provide very accurate 

sensitivity analysis results. This is due to the fact that the FORM is essentially a linear 

approximation of the actual limit state surface at the design point and does not adequately deal 
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with highly non-linear problems. Instead, the second order reliability method (SORM) can be used 

owing to its advantage in capturing the non-linearity of limit state surface at the design point. In 

view of the complex computational procedures of the SORM, the SORM is not focused on herein 

and could be included in the future work for the verification of reliability results derived from the 

FORM algorithm. However, the MCS technique is a versatile simulation tool and is capable of 

handling highly non-linear performance functions with a large amount of random sampling 

(Fenton and Griffiths, 2008). The MCS technique can serve as a complementary tool to the FORM 

algorithm and provide reliable sensitivity analysis results especially in highly non-linear problems. 

  

Figure 5.11 The rank of relative importance of input parameters: (A) ranked by regression 

coefficient; (B) ranked by the contribution to variance 

5.5.3 Effects of correlation between intact UCS and elastic modulus 

Effects on reliability index and probability of failure 

It is well-recognized that the UCS and elastic modulus or rocks are correlated and a positive 

correlation between the intact UCS and elastic modulus has been reported in the published 

literature and geotechnical practice (Arslan et al., 2008; Hoek and Diederichs, 2006; Palchik, 1999; 

Palmstrom and Stille, 2010; Wang and Aladejare, 2016). The significant impact of the correlation 

structure between ground parameters on the reliability analysis and probabilistic design of 

geotechnical structures has also been highlighted in previously published literature (Lü and Low, 

2011; Lü et al., 2011; Wang and Akeju, 2016; Wang and Aladejare, 2016). 

The effects of the correlation between intact UCS and elastic modulus on the reliability 

have been studied using the FORM spreadsheet, and the obtained results are shown in Figure 5.12. 

The probability of failure results calculated from the MCS simulation process are also included for 

comparison. The MCS-derived results of probability of failure agree well with those generated in 

the reliability analysis with the FORM spreadsheet. Results also reveal that the stronger the 



 

127 

 

correlation between the intact UCS and elastic modulus, the higher the safety level achieved with 

greater reliability index and smaller probability of failure. This indicates that the level of reliability 

and safety is underestimated if the correlation is neglected. It is often perceived as conservative to 

neglect the correlation between ground parameters, and various research (Li and Low, 2010; 

Mollon et al., 2009b; Pan and Dias, 2018; Zeng et al., 2014) in the field of underground 

construction has confirmed this point. With regard to this conservativeness, Langford (2013) 

pointed out that it introduces errors to an uncertainty-based assessment and can result in the 

development of incorrect geomechanical models as well as unreasonable extreme output values. 

Thus, it is necessary and essential to more realistically account for the correlation between input 

parameters if the correlation exists and to reduce the conservativeness. 

 

Figure 5.12 Effects of the correlation coefficient between UCS and elastic modulus on reliability 

Song et al. (2016) reported that the reliability results were overestimated if the correlation 

between the UCS and elastic modulus of intact rock was neglected based on limit state functions 

of plastic zone and radial tunnel displacement. Lü et al. (2012) suggested that the reliability results 

are conservative in the plastic zone criterion while not conservative in the tunnel convergence 

criterion if the correlation between the deformation modulus of rock mass and the intact strength 

is not modeled. It was further concluded that the complicated influences of correlation structure 

on the reliability results depend on the orientation of the limit state surface and the direction of the 

correlation structure. This can be intuitively appreciated using the perspective of the expanding 
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dispersion ellipsoid (Lü et al., 2012; Lü et al., 2011). To be more specific, in the case of a positively 

inclined limit state surface, the positively correlated dispersion ellipsoid has to expand more (i.e. 

greater reliability index) than the non-correlated dispersion ellipsoid to touch the limit state surface; 

in contrast, in the case of a negatively inclined limit state surface, the positively correlated 

dispersion ellipsoid has to expand less than the un-correlated dispersion ellipsoid, thus leading to 

smaller reliability index. In this study, the limit state surface in the space of the intact UCS and 

elastic modulus is positively inclined, and thus the positive correlation between the intact UCS and 

elastic modulus results in a larger reliability index. 

Effects on sensitivity analysis 

The effects of the correlation between the intact UCS and elastic modulus on the relative 

importance of input parameters were also investigated in the MCS process, and the results are 

shown in Figure 5.13. Results show that the correlation has insignificant effects on the sensitivities 

in the regression analysis. Similar to the results in Section 5.5.2, the sensitivity results obtained 

based on the criteria of regression coefficient and contribution to variance are consistent, in which 

the intact UCS and elastic modulus are most influential while the Q index and the vertical stress 

have minimal impact. It is also found that the sensitivity results based on the criterion of the 

contribution to variance are more sensitive than those based on the criterion of regression 

coefficient to the correlation structure between the intact UCS and elastic modulus. 

5.5.4 Effects of distribution types for intact UCS and elastic modulus 

Uncertainty and variability exist in rock properties and probability distribution models can 

be used to explicitly characterize them. Table 5.4 summarizes the commonly used distribution 

types for the intact UCS and elastic modulus from published studies. Both the intact UCS and 

elastic modulus can be described by normal, lognormal and beta distributions. The lognormal 

distribution and the beta distribution are often used as alternatives to the normal distribution to rule 

out negative values, which are not physically meaningful, when the COV of the ground parameters 

is over 25% (Li and Low, 2010). The bounded beta distribution with a lower and an upper bound 

is versatile and can be used in lieu of the normal distribution (Low, 2008b). The beta distribution 

is characterized by four parameters (alpha1, alpha2, min, max) in which the first two parameters 

are shape parameters while the latter two parameters define the bounds of the distribution. The 

mean and standard deviation of a beta distribution can be calculated as follows (Benjamin and 

Cornell, 2014): 
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Figure 5.13 Effects of correlation on sensitivity: (A) ranked by regression coefficient; (B) ranked 

by the contrition to variance 
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The comparison among the normal distribution, lognormal distribution and beta 

distribution for the intact UCS and elastic modulus with respective statistics is demonstrated in 

Figure 5.14. The effects of distribution types for the intact UCS and elastic modulus on the 

reliability were investigated and are shown in Figure 5.15. Three scenarios, including the normal, 

lognormal and beta distributions for both the intact UCS and elastic modulus, were compared to 
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the scenario with the combination of normal (UCS) and lognormal distributions (the elastic 

modulus), which was used in the reliability analysis shown in Figure 5.8. It can be seen in Figure 

5.15 that all these three assumed distribution types generated lower reliability index and higher 

probability of failure than the scenario with combined distributions. The normal distribution 

scenario produces the lowest level of reliability, indicating the most conservativeness for the 

normal distribution assumption.  

Table 5.4 Summary of distribution types for the UCS and elastic modulus of rocks. 

Rock 

property 
Distribution type Literature 

UCS 

Normal 

distribution 

Yamaguchi, 1970; Hoek 1998; Grasso et al., 1992; Hsu 

and Nelson, 2002; Pathak and Nelson, 2004; Gill et al., 

2005; Sari and Karpuz, 2006 

Lognormal 

distribution 

 Lv et al., 2013; Song et al., 2016; Zeng et al., 2014; Lv et 

al., 2017; Pan et al., 2018 

Beta distribution 
Baecher and Christian, 2003; Ang and Tang, 2007; Fenton 

and Griffiths, 2008; Song et al., 2016 

Elastic 

modulus 

Normal 

distribution 

Hoek, 1998; Li and Low, 2010; Cai, 2011; Lv et al., 2011; 

Su et al., 2011; Song et al., 2016; Bjureland et al., 2017 

Lognormal 

distribution 

Li and Low, 2010; Low and Einstein, 2013; Lv et al., 

2011; Lv et al., 2013; Song et al., 2016; Tiwari et al., 

2017; Lv et al., 2017 

Beta distribution 
Li and Low, 2010; Lv et al., 2011; Song et al., 2016; Ang 

and Tang, 2007 
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Figure 5.14 Comparison of PDFs of elastic modulus with different distribution assignments: (A) 

UCS; (B) elastic modulus 

It is generally considered conservative to assume a normal distribution for geotechnical 

parameters according to published studies (Li and Low, 2010; Lü et al., 2013; Lü et al., 2011; 

Mollon et al., 2009b, 2010; Pan and Dias, 2018; Zeng et al., 2014), and the results in this study 

also confirm this statement. It is also found that the results generated from the beta distribution are 

closest to those produced from the scenario of the combined distributions. The characteristic of 

the bounded beta distribution being an appropriate approximation distribution for geotechnical 

parameters in reliability analysis has also been reported in literature (Li and Low, 2010; Lü et al., 

2011; Mollon et al., 2009a, b, 2010; Pan and Dias, 2018; Song et al., 2016; Zeng et al., 2014). Note 

that the effects of different distribution types for the intact UCS and elastic modulus on the 

reliability are limited in this study. This may be due to the relatively high reliability in this case 

and the low variations of the intact UCS and elastic modulus with COV of 19.7% and 15.7%, 

respectively. The impact of different distribution assignments may be more significant given 

greater uncertainty and variability in the geotechnical input parameters. The advantage of 

excluding irrational negative values from lognormal and bounded beta distributions may also be 

more appreciated in scenarios of geotechnical parameters with more variability. 

5.5.5 Effects of COV of intact UCS and elastic modulus 

 COV is a statistical measure of the overall dispersion in a geotechnical parameter and it 

has been widely used to describe the inherent variability of rocks and soils (Baecher and Christian, 

2003; Fenton and Griffiths, 2008; Lacasse and Nadim, 1996; Phoon and Kulhawy, 1999). 
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Gunsallus and Kulhawy (1984) compiled a database of rock property measures, including the UCS 

and elastic modulus of intact rocks, from eight sedimentary rock units from the northeastern United 

States. The obtained results showed that the COV of UCS varied from 7% to 59% while the COV 

of elastic modulus were in the range between 7% and 48%. In this study, the COV of the intact 

UCS and elastic modulus was assumed to vary from 10% to 50%, and the effects of COV on the 

reliability were examined. 

 

 

Figure 5.15 Effects of distribution types on the probability of failure: (A) reliability index; (B) 

probability of failure. 
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For the effects of the UCS on the reliability, the elastic modulus was set to follow 

lognormal distribution with COV of 15.7%, and the COV of UCS was varied from 10% to 50% to 

study its effect on the reliability index and the probability of failure. Similarly, for the effects of 

the elastic modulus on the reliability, the UCS was set to follow a normal distribution with COV 

of 19.7%, and the COV of the elastic modulus was changed from 10% to 50% to investigate its 

influence on the reliability. For the combined effects of UCS and elastic modulus, the COVs of 

these two parameters were changed to the same values simultaneously from 10% to 50%. 

 

 

Figure 5.16 Effects of COV on the probability of failure: (A) reliability index; (B) probability of 

failure. 

Figure 5.16 shows the effects of the COV on the reliability index and probability of failure. 

It is clear that the effects of the COV for the intact UCS on the reliability are significant. The 
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reliability index decreases from 2.87 to 1.59 and the probability of failure increases from 0.21% 

to 5.61% when the COV of UCS increases from 10% to 50%. By contrast, the reliability index and 

the probability of failure are insensitive to the variation of the COV of the elastic modulus. The 

reliability index changes from 2.75 to 2.78 and the probability of failure varies from 0.3% to 0.27% 

when the COV of the elastic modulus varies from 10% to 50%. This also verifies the greater 

significance of the UCS than the elastic modulus, which is consistent with the obtained sensitivity 

analysis results as described in Section 5.5.2. Interestingly, the simultaneous variation of the UCS 

and the elastic modulus has less influence on the reliability than that caused by the variation of the 

UCS alone even when the COV of the elastic modulus for the former (over 20%) is larger than the 

latter (19.7%). This may be due to the fact that the increase of the COV of the elastic modulus 

alone results in a slight increase of the reliability, as can be seen in Figure 5.16. 

To investigate the effects of the variability on the reliability for scenarios with different 

distribution assumptions, the influences of the COV of the UCS and elastic modulus were 

compared under different distribution assignments, as shown in Figure 5.17. With regard to the 

effects of UCS on the reliability, similar to the scenarios in Figure 5.16, the elastic modulus was 

set to follow lognormal distribution with COV of 19.7% and the influences of the COV of the UCS 

under different distribution assignments on the reliability were compared. The effects of the elastic 

modulus and the combined effects of these two rock properties were also examined analogously. 

Results in Figure 5.17 show that the reliability results are most sensitive to the normal distribution, 

followed by the lognormal distribution and the beta distribution. This may be related to the non-

skewness (or symmetry) of the normal distribution. The normal distribution also generates the 

most conservative results with lower reliability index and higher probability of failure than other 

distribution types, similar to the results in Section 5.5.4. It is also obvious to see that the reliability 

results are much more sensitive to the variability of the UCS than that of the elastic modulus. The 

reliability results generated in the normal distribution scenario are closer to those produced in the 

scenario with combined distributions than non-normal distribution scenarios. This may be due to 

the fact that the UCS is much more influential than the elastic modulus and that the normal 

distribution scenario has the same UCS distribution as the combined distribution scenario. Similar 

to what has been discussed in Section 5.4.5, this also indicates the importance to identify the most 

influential input parameter and assign appropriate distribution type to it due to its greatest 

contribution to the output parameter. 
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Figure 5.17 The effects of distribution types on the influences of COV on the probability of 

failure. 

5.5.6 Reliability evaluation on the excavation stability 

Excavation stability evaluation using different approaches 

Recall that the obtained reliability index is 2.778 and the probability of failure is 0.27% 

with the probabilistic critical strain in the performance function, as shown in Figure 5.8. The target 

reliability indices and corresponding probability of failure are summarized by USACE (1997) for 

general structures in the geotechnical engineering field, as shown in Table 5.5. The probability of 

failure value for the excavated Shimizu tunnel is 0.27%. The expected performance level is worse 

than “above average” and better than “below average”. 
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Table 5.5 Target reliability indices (USACE, 1997) 

Expected Performance Level 
Reliability 

index 

Probability of Unsatisfactory 

Performance 

High 5 0.00003% 

Good 4 0.003% 

Above average 3 0.1% 

Below average 2.5 0.6% 

Poor 2.0 2.3% 

Unsatisfactory 1.5 7% 

Hazardous 1.0 16% 

 To verify the reliability evaluation results for the excavation stability, the stability of the 

excavated Shimizu tunnel was also assessed using analytical and numerical approaches for the 

comparative and check purposes for the same tunnel station STA 913+65 as in Chapter 4, The 

estimated PDFs of the tunnel strain were compared using analytical, numerical and empirical 

approaches. With regard to the analytical approach, the convergence-confinement method (CCM) 

(Carranza-Torres and Fairhurst, 2000; Panet and Guenot, 1983) was used. In the CCM method, 

the equivalent radius of 7 m was used. The calculated critical support pressure result is negative, 

indicating no plastic behavior took place. The radial elastic displacement was calculated and used 

in the study; in terms of the numerical approach, Rocsupport and RS2 FEM software were 

employed; as for the empirical  approach, the tunnel displacement estimation approach developed 

by Barton (2002) was utilized in this study for reliability analysis.  

These obtained PDFs of tunnel strain are summarized with respective statistical moments 

in Figure 5.18 in comparison to the PDF of estimated critical strain. In the critical strain-based 

limit state function, the estimated strains using different approaches can be regarded as the load 

component in the realm of LRFD, while the critical strain may be viewed as the resistance 

component. All the estimated PDFs of tunnel strain are on the left of the PDF of critical strain, and 

the potential for failure can be represented by the overlapping area between PDF curves of the 

estimated strain (load component) and critical strain (resistance component). As mentioned above, 

the probability of failure derived from the empirical Barton approach (Barton, 2002) is 0.27% 

using the FORM algorithm. Results in Figure 5.18 show that the overlapping areas in the scenarios 

with other approaches are larger than that in the scenario with the Barton approach (Barton, 2002), 

indicating probability of failure values greater than 0.27%.  
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Figure 5.18 Comparison of PDFs of estimated strain and critical strain. 

The CCM and Rocsupport results show the elastic behavior in the excavated tunnel, 

meaning no plastic zone generated around the excavated tunnel. Note that the equivalent radius of 

7 m is used in the CCM and Rocsupport, and the mean displacement is 2.38 and 2.45 cm, 

respectively. These relatively small elastic displacements indicate the unsupported tunnel is stable.  

The unsupported tunnel strains estimated using the RS2 FEM software, which have higher 

mean values, result in larger overlapping areas, as seen in Figure 5.18. Figure 5.19 illustrates the 

calculated displacement contours around the tunnel excavation. There is no significant plastic 

behavior, and the sheared or tensioned yielding mainly takes place around the tunnel periphery. 

The maximum displacement occurs at the invert with mean of 4.5 cm and SD of 2.2 cm, 

corresponding to a mean strain of 0.75% and a strain SD value of 0.36%. The crown displacement 

has the mean of about 4 cm and SD value of about 2 cm, corresponding to a mean strain of 0.66% 

and a strain SD value of 0.33%.  

To evaluate the crown displacement for the unsupported tunnel, the ground reaction curves 

have been generated using the RS2 software. The tunnel is assumed to be full-face excavated, and 

the mean and lower bound (one standard deviation below the mean) rock mass properties have 

been considered. Figure 5.20 shows the ground reaction curves for mean and lower bound cases.  
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Figure 5.19 Displacement contour of the unsupported tunnel. 

 

Figure 5.20 Ground reaction curves using mean and low bound rock mass properties 

The ground reaction curves are linear, indicating the elastic behavior in the tunnel. Total 

elastic crown displacements for the fully relaxed tunnel are 2.9 and 6.5 cm for the mean and lower 

bound cases, respectively. Considering the large span and height of the tunnel, the elastic 

displacement on the order of 4 cm is not expected to cause failure or instability during the 

construction. In addition, the strength factor, a measure of safety level in terms of strength-to-stress 

ratio, has been obtained and its contour is shown in Figure 5.21.The strength factor at the crown 
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has a mean value of 2.9 with COV of 37%. The minimum strength factor is observed at the corner 

with a mean value of 1.51 and COV of 25%. Thus, it is highly likely that the unsupported Shimizu 

tunnel is not expected to encounter instability after excavation.  

 

Figure 5.21 The strength factor contour of the unsupported tunnel. 

Comparison between unsupported and supported case 

As mentioned in Section 4.4.3 in Chapter 4, the primary support was designed based on 

Japanese highway rock mass classification systems in the Shimizu tunnel, and it was a combination 

of rockbolts, shotcrete and steel arch. The tunnel construction using the heading and bench method 

was modeled using the RS2 software with the prescribed support installed.  

 

Figure 5.22 The displacement contour of the supported tunnel 
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Figure 5.22 shows the displacement contour of the fully excavated tunnel after support. 

The tunnel displacements with and without support are compared in Table 5.6. The supported 

tunnel crown has the mean value of 1.85 cm and SD value of 0.87 cm, corresponding to a mean 

strain of 0.31% and a strain SD value of 0.15%. Compared to the unsupported tunnel case, the 

crown displacement reduced significantly with the tunnel support installed. The distributions of 

crown displacement between unsupported and supported tunnel are compared in Figure 5.23. The 

distributions of empirically estimated strain using Barton approach and the critical strain are also 

included for comparison. It is seen that the mean and SD decrease by about 50% from the 

unsupported case to supported case. It also reveals that the overlapping area between the tunnel 

crown strain in the supported case and the critical strain is much smaller than that derived from 

the Barton approach, indicating a smaller probability of failure in the supported tunnel case 

(<0.27%). Thus, the reliability of the tunnel has increased significantly with the support installed. 

Table 5.6 Comparison of tunnel displacement before and after the support installation 

Scenario 

Displacement (cm) Strain 

Crown C Invert Crown C Invert 

Mean  SD COV Mean  SD COV Mean  SD Mean  SD 

Without 

support 
3.95 1.97 50% 4.49 2.19 49% 0.44% 0.22% 0.06% 0.50% 

With 

support 
1.85 0.87 47% 4.1 1.98 48% 0.21% 0.10% 0.05% 0.46% 

The Q-based support chart is shown in Figure 5.24. The 1.5ESR and 5Q can be used for 

the temporary support for underground openings (Barton and Grimstad, 2014). Figure 5.24 shows 

the suggested temporary support based on the Q-support chart (NGI, 2015). Support category 3 is 

recommended, including systematic bolting and fiber reinforced sprayed concrete of 5-6 cm 

thickness. Clearly, the heavy and rigid support adopted in the Shimizu tunnel, selected based on 

Japanese highway rock mass classification system, is much more conservative than the Q-based 

support recommendation.  

Based on the stability evaluation results mentioned above, it is shown that the unsupported 

tunnel is not expected to encounter instability after excavation. However, note that the analyses 

and discussion aim to provide a preliminary evaluation on the excavation stability and only stress-

induced instability is considered. In reality, there may be some structurally-controlled instability 

issues for the excavated tunnel especially considering three dominant joint sets in the Shimizu  
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Figure 5.23 Distribution comparison of estimated strain between unsupported and supported 

tunnel cases 

  

Figure 5.24 Temporary support based on the Q-support chart (NGI, 2015) 
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tunnel area. As a result, rockbolts and shotcrete may be required to support the loose blocks formed 

by the intersection of joint sets. Actual construction practice is more complicated than the modeled 

scenario since there are more factors involved, such as the heterogeneity and spatial variability of 

rock mass, the varying overburden, the seismic consideration, the safety of the workforce during 

construction etc. The overly-conservative support system used in the Shimizu tunnel may be 

designed to have considered the weak and very weak rock mass near the fault zones at the eastern 

sector and portal areas. In this study, the stability of the tunnel excavation has been evaluated from 

a perspective of reliability, and the reliability evaluation results have confirmed the stability of the 

excavated tunnel, which is also consistent with the stability assessment results using analytical and 

numerical approaches. 

5.6 Conclusions 

The reliability assessment with a strain-based failure criterion for the stability evaluation of 

underground excavation has been performed using the FORM algorithm with the Q-based 

empirical approach. The Shimizu highway tunnel case study was utilized as an example to perform 

the reliability evaluation. Reliability analyses were conducted using the FORM algorithm with 

both the deterministic and probabilistic critical strain which accounts for uncertainties in rock mass 

parameters. The reliability analysis using the MCS simulation was also performed for comparison. 

The reliability analysis results obtained from the FORM algorithm agreed well with those derived 

from the MCS technique. The FORM algorithm can be used as a complement to the MCS 

simulation in reliability analysis when dealing with complicated problems that require 

considerable computation efforts for MCS iterations. 

Reliability analysis results show that the reliability level increased, represented by the 

increase of the reliability index and the decrease of the probability of failure, with the increase of 

deterministic critical strain value. However, the deterministic critical strain does not consider 

inherent uncertainties in rock masses. The selection of an appropriate deterministic critical strain 

value is also not an easy task, which may require the site knowledge, local construction experience 

as well as engineering judgement based on some numerical calculations or field measurements. 

However, the probabilistic critical strain, which enables the consideration of uncertainties in rock 

mass parameters, is capable of overcoming these difficulties when choosing appropriate single 

critical strain value in the deterministic critical strain approach. 
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The effects of correlation in input parameters on the reliability were investigated. Results 

show that the negative correlation between RQD and Jn had limited influence on the reliability. 

The positive correlation between the intact UCS and elastic modulus was also examined, and it 

was found that the reliability results would be conservative if the positive correlation between the 

intact UCS and elastic modulus is overlooked. In addition, the effects of distribution types for the 

intact UCS and elastic modulus were also studied. The normal distribution assignment generated 

the most conservative reliability results. Thus, the assumption of uncorrelated and normally 

distributed input parameters (intact UCS and elastic modulus) has generated more conservative 

reliability results in this case study. 

The influence of COV in input parameters on the reliability has also been examined. 

Results show that its effect on the reliability was dependent on the relative importance of the input 

parameter. Probabilistic sensitivity analysis indicates the intact UCS was the most influential input 

parameter while the elastic modulus had limited influence. The variations in COV for the intact 

UCS had a great effect on the reliability while the reliability results were insensitive to variations 

in COV for the intact elastic modulus. 

The reliability analysis results show that the Shimizu tunnel had a relatively high reliability 

(reliability index of 2.78 and probability of failure of 0.27%) and was not expected to experience 

instability after excavation. The excavation stability has also been evaluated using analytical and 

numerical approaches, and the obtained results were consistent with reliability assessment results, 

which has also verified the effectiveness of the reliability-based excavation stability evaluation. 

The reliability of the supported tunnel with the actually installed support system has also been 

examined, and results show that the reliability has greatly improved compared to the unsupported 

tunnel case. The reliability assessment using the FORM algorithm with the Q-based empirical 

approach can be used as a complement to analytical and numerical approaches in the preliminary 

evaluation of the stability of underground excavations. 
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CHAPTER 6  

CONCLUSIONS AND RECOMMENDATIONS 

The research presented in this report attempts to improve the understanding of the inherent 

uncertainties in rock mass classifications and investigate the uncertainty propagation into the 

analysis and design process of underground construction. A systematic assessment of uncertainties 

in rock mass classification systems, using the Q-system as an example in this study, was performed. 

The Markov Chain technique has been incorporated in the Q-based prediction model to provide 

the probabilistic distribution of the Q value in unexcavated tunnel sections. The results can be used 

to complement geology exploration in planning and preliminary stages of tunnel projects. In 

addition, an MCS-based uncertainty analysis framework of the probabilistic Q-system has also 

been developed to characterize the uncertainty in input parameters of the Q-system and investigate 

its effects on the rock mass property characterization and ground response evaluation in tunneling. 

The developed framework can be helpful in providing insightful information for the probabilistic 

evaluation of excavation-induced ground behavior and the probabilistic tunnel design. Moreover, 

the research performed reliability analysis using the Q-based empirical approach, which 

incorporates probabilistic critical strain and Q-based empirically estimated strain, to preliminarily 

evaluate the stability of underground opening. The reliability analysis using the Q-based empirical 

approach can supplement analytical and numerical approaches in the preliminary evaluation of 

tunnel excavation stability. The chapter summarizes major findings and conclusions from each 

chapter of the report, and some recommendations for future research are also presented. 

6.1 Specific conclusions from each chapter 

6.1.1 Probabilistic prediction of rock mass quality 

In Chapter 3, a Markovian Q-based prediction model has been proposed using the MCS 

technique to provide the probability distribution of rock mass quality along the tunnel alignment 

before construction. In addition to the MCS-based predicted results, an analytical approximation 

approach to deriving the statistics (mean, standard deviation, COV) of the Q value has also been 

developed given the statistics of input parameters in the Q-system. The proposed probabilistic 

prediction model and the developed analytical approach have been applied to a water tunnel section 

for the purpose of validation. The MCS-derived and analytically calculated Q values were 
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comparable to the actually recorded Q results, which has also proved the validity of the proposed 

prediction model and developed analytical approach. 

Probabilistic sensitivity analysis was also carried out in the MCS process and the most 

influential input parameters in the Q-system are Jn and RQD in the tornado graphs in this case 

study, consistent with the greater variations in the predicted probabilistic profile of Q-parameters 

Jn and RQD. In addition, the negative correlation between RQD and Jn was presented, and the 

mean and dispersion of the Q value were found to be underestimated if the correlation was 

neglected. The effects of distribution type for RQD on the Q value have also been examined. The 

normal distribution was a good fit for the actually recorded RQD data in this case study, and the 

simulated statistics of the Q value under this normal distribution assumption agreed well with the 

actually recorded Q results. 

The proposed Q-based prediction model is helpful in reducing uncertainties and risks 

involved in rock mass classifications and can serve as a complement to geology exploration in the 

planning and preliminary design stage of underground construction. It can also provide insights 

into the decision support for the design of excavation sequence and support schemes for the 

underground structures. 

6.1.2 Uncertainty analysis in probabilistic Q-system 

In Chapter 4, an MCS-based uncertainty analysis framework in the Q-system has been 

developed to probabilistically characterize the uncertainty in input parameter of Q-system and its 

effects on rock mass characterization and ground response by applying the MCS technique with 

appropriate empirical correlations. A case study of the Shimizu highway tunnel was adopted to 

implement the developed framework. The probabilistic distribution of the Q value was obtained 

using the MCS technique based on relative frequency histograms of the Q-parameters. The MCS-

derived Q statistics are more reasonable than the conventional estimation results using the interval 

analysis. The MCS technique can more realistically take into account the correlations in input 

parameters in the estimation as well as providing the full probabilistic distribution of the Q value, 

while the estimation using the conventional approach is based on assumptions of perfect 

correlations which are rarely met in practice. Similarly, based on appropriate Q-based empirical 

correlations, probabilistic estimates of rock mass properties were obtained, which were 

subsequently used as inputs in numerical models for excavation response evaluation. The 

empirically estimated probabilistic tunnel displacement, obtained by the Barton approach, 



 

146 

 

generally agreed with that derived from the probability analysis in the FEM RS2 numerical models 

with the PEM and MCS sampling techniques. 

The advantage of probabilistic sensitivity analysis in the MCS process has been pointed 

out over the traditional one-way sensitivity analysis. The probabilistic sensitivity analysis takes 

the input distributions into account and enables simultaneous variations of all the input parameters 

based on their respective distributions. The probabilistic sensitivity analysis results agreed well 

with those obtained from other sensitivity analysis techniques in the probabilistic Q-system in this 

case study. The use of different sensitivity analysis methods is suggested for comparative and 

checking purposes. 

The effects of the negative correlation between RQD and Jn have also been examined. The 

mean and dispersion of the Q value and associated rock mass parameters would be underestimated 

if the negative correlation was not modeled in this case study. The effects of the distribution types 

of Q-parameters on the Q value and associated rock mass parameters were significant. Caution 

should be exercised when selecting appropriate distribution types for Q-parameters when only 

limited site investigation data are available, and a combination of site knowledge, local experience 

and professional engineering judgement should be used. 

The proposed framework of the MCS-based uncertainty analysis in the probabilistic Q-

system provides an approach for systematically characterizing the uncertainty in the rock mass 

classification and its propagation to associated rock mass parameters. The framework can also 

serve as a useful tool to obtain insightful information for the probabilistic evaluation of ground 

responses and support performance of underground structures. 

6.1.3 Reliability evaluation on tunnel excavation stability 

In Chapter 5, reliability assessment with the strain-based failure criterion has been performed 

using the FORM algorithm. The probabilistic critical strain and Q-based empirically estimated 

tunnel strain were incorporated in the limit state function. The Shimizu highway tunnel case study 

was also utilized as an example to perform the reliability evaluation on the excavation stability. 

Reliability analysis using the MCS technique was also performed for comparison. The reliability 

analysis results obtained from the FORM algorithm agreed well with those derived from the MCS 

technique.  

The effects of correlation in the input parameters on the reliability have also been investigated. 

The negative correlation between RQD and Jn had limited influence on the reliability in this 
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Shimizu tunnel case study. The positive correlation between the UCS and elastic modulus of intact 

rocks was also presented based on available data. The impact of the positive correlation on the 

reliability was significant, and the reliability would be conservative if the positive correlation is 

overlooked. In addition, the effects of distribution types for the UCS and elastic modulus of intact 

rocks were also studied. The normal distribution assignment generated the most conservative 

reliability results than other distributions. Thus, the assumption of uncorrelated and normally 

distributed input parameters (intact UCS and elastic modulus) generated more conservative 

reliability results in this case study. 

The influence of COV in input parameters on the reliability has also been examined. Results 

show that its effect on the reliability was dependent on the relative importance of the input 

parameters. Probabilistic sensitivity analysis indicated the intact UCS was the most influential 

input parameter while the elastic modulus has limited influence in this case study. The variations 

in COV for the intact UCS had great effects on the reliability while the reliability results were 

insensitive to variations in COV for the intact elastic modulus. 

The reliability analysis results show that the Shimizu tunnel had a relatively high reliability 

(reliability index of 2.78 and probability of failure of 0.27%) and was not expected to experience 

instability after excavation. The excavation stability has also been evaluated using analytical and 

numerical approaches, and the obtained results were consistent with reliability assessment results, 

which has verified the effectiveness of the reliability-based evaluation on tunnel excavation 

stability. Thus, the reliability assessment using the Q-based empirical approach can be used as a 

complement to analytical and numerical approaches in the preliminary evaluation of the stability 

of underground excavations. 

6.2 Recommendations for future research 

The aim of this research is to advance understanding of uncertainty analysis in rock mass 

classification systems in the current research, using the rock mass classification Q-system in this 

study, and apply it to the reliability-based evaluation on the stability of underground excavations. 

Due to the limited availability of rock mass classification data, only two tunnel cases with available 

Q data have been used. Thus, the research presented in this report should be applied to more case 

studies with Q data to test the performance of the prediction model and to verify the validity of the 

developed uncertainty analysis framework. In addition, the extension of the research should also 
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be made to other rock mass classification systems such as RMR and GSI. With regard to the 

proposed probabilistic prediction model, the predicted Q values for the unexcavated tunnel 

sections have been validated by the actually recorded Q results during construction. However, the 

probabilistic prediction model has not been incorporated and updated based on newly available 

data during tunnel construction. Moreover, in terms of the reliability-based analysis, the focus in 

this research was the preliminary evaluation on the tunnel excavation stability. The performance 

of the actually installed support was verified, but the reliability-based design for the underground 

excavations, e.g. the design for the required support systems, has not been conducted.  

In view of the needs of this research mentioned above, the following future research can be 

performed to have an improved understanding of the uncertainty in rock mass classifications and 

its effect on the tunnel design aspect: 

• Implementation of the research to more tunnel case studies with Q data should be 

performed. Tunnel case examples with Q data should be used to test the performance of 

the proposed probabilistic prediction model and to verify the validity of the developed 

uncertainty analysis framework in this study. 

• Extension of the research to other rock mass classifications (RMR, GSI) should be 

conducted. Different rock mass classification (RMR, GSI) data available from various 

tunnel projects should be collected and utilized to verify the proposed prediction model 

and developed uncertainty analysis framework. 

• Incorporation of the proposed probabilistic prediction model using the Bayesian updating 

technique or equivalent should be conducted based on the newly available data during 

construction. Newly available rock mass classification data or tunnel response data 

(displacement, strain, load, pressure etc.), observed or measured during tunnel construction, 

can be used to update the previous predictions. 

• Reliability-based design should be performed to optimize tunnel support. For example, the 

required tunnel support can be estimated according to prescribed target reliability index or 

maximum allowable probability of failure within the framework of reliability-based design. 

Support design parameters, such as the shotcrete thickness or the distance of the support 

installation behind the tunnel face, can be evaluated and optimized to achieve the desired 

reliability level for the tunnel support design. 
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APPENDIX A - DEFINITIONS AND RATINGS FOR STATES OF Q-PARAMETERS 

(MODIFIED FROM BARTON 2002) 

Table A. 1 States, descriptions and ratings for RQD. 

States Descriptions Rating 

1 Very poor 0-25 

2 Poor 26-50 

3 Fair 51-75 

4 Good 76-100 

Table A. 2 States, descriptions and ratings for Jn. 

States Descriptions Rating 

1 None  0.5 

2 One 2 

3 One plus 3 

4 Two 4 

5 Two plus 6 

6 Three 9 

7 Three plus 12 

8 Four or more 15 

9 Earth 20 

Table A. 3 States, descriptions and ratings for Jr. 

States Descriptions Rating 

1 Discontinuous 4 

2 
Undulating 

Rough undulating 3 

3 Smooth undulating 2 

4 Slickensided undulating or Rough planar 1.5 

5 
Planar 

Smooth planar 1 

6 Slickensided planar 0.5 

7 No contact when sheared 1 
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Table A. 4 States, descriptions and ratings for Ja. 

States Descriptions Rating 

1 

No fills 

Healed 0.75 

2 Unaltered joint wall 1 

3 Slightly altered wall 2 

4 Coated non-softening 3 

5 Coated softening or disintegrated sandy particles  4 

6 
Thin 

fills 

Thin non-softening clay fillings 6 

7 Thin softening clay fillings 8 

8 Thin swelling clays 12 

9 Thick 

fills 

Thick, continuous; clay band; medium to low over-

consolidated 
13 

10 Thick, continuous; clay band; swelling clay 20 

Table A. 5 States, descriptions and ratings for Jw. 

States Descriptions 
Approx. water 

press. (kg/cm2) 
Rating 

1 Dry <1 1 

2 Wet 1~2.5 0.66 

3 High pressure in unfilled joints 2.5~10 0.5 

4 High pressure with fillings outwash 2.5~10 0.33 

5 Exc. inflows with decay >10 0.1 

6 Exc. inflows without decay >10 0.05 

Table A. 6 States, descriptions and ratings for SRF. 

States Descriptions Sigma c/Sigma 1 Rating 

1 Multiple clay zones 10 

2 Multiple non-clay zones 7.5 

3 Single weak zone (Depth<50m) or heavily jointed 5 

4 Single weak zone (Depth>50m) or low stress(>200) 2.5 

5 Medium stress 200-10 1 

6 High stress with tight structure 10~5 2 

7 Moderate slabbing 5~3 50 

8 Slabbing and rock burst 3~2 200 

9 Heavy rock burst <2 400 
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APPENDIX B - TRANSITION PROBABILITY AND TRANSITION INTENSITY 

COEFFICIENT OF Q-PARAMETERS 

Table B. 1 Transition probability and intensity coefficient of RQD states. 

State i 

Pij for RQD 

ci State j 

1 2 3 4 

1 0 0.2 0.4 0.4 10 

2 0 0 0.4 0.6 0.098 

3 0 0.3 0 0.7 0.083 

4 0 0.2 0.8 0 0.071 

Table B. 2 Transition probability and intensity coefficient of Jn states. 

State 

i 

Pij for Jn 

ci State j 

1 2 3 4 5 6 7 8 9 

1 0 0 0.25 0.375 0.375 0 0 0 0 10 

2 0 0 0.176 0.353 0.471 0 0 0 0 10 

3 0 0 0 0.5 0.5 0 0 0 0 0.116 

4 0 0 0 0 1 0 0 0 0 0.162 

5 0 0 0.333 0.667 0 0 0 0 0 0.014 

6 0 0 0.176 0.353 0.471 0 0 0 0 10 

7 0 0 0.176 0.353 0.471 0 0 0 0 10 

8 0 0 0.176 0.353 0.471 0 0 0 0 10 

9 0 0 0.176 0.353 0.471 0 0 0 0 10 
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Table B. 3 Transition probability and intensity coefficient of Jr states. 

State i 

Pij for Jr 

ci State j 

1 2 3 4 5 6 7 

1 0 0 0 1 0 0 0 0.25 

2 0 0 0 0.455 0.545 0 0 10 

3 0 0 0 0.455 0.545 0 0 10 

4 0.25 0 0 0 0.75 0 0 0.015 

5 0 0 0 1 0 0 0 0.389 

6 0 0 0 0.455 0.545 0 0 10 

7 0 0 0 0.455 0.545 0 0 10 

Table B. 4 Transition probability and intensity coefficient of Ja states. 

State 

i 

Pij for Ja 
ci 

State j 

1 2 3 4 5 6 7 8 9 10  

1 0 0.1 0.5 0.4 0 0 0 0 0 0 10 

2 0 0 1 0 0 0 0 0 0 0 0.5 

3 0 0.2 0 0.8 0 0 0 0 0 0 0.025 

4 0 0 1 0 0 0 0 0 0 0 0.041 

5 0 0.1 0.5 0.4 0 0 0 0 0 0 10 

6 0 0.1 0.5 0.4 0 0 0 0 0 0 10 

7 0 0.1 0.5 0.4 0 0 0 0 0 0 10 

8 0 0.1 0.5 0.4 0 0 0 0 0 0 10 

9 0 0.1 0.5 0.4 0 0 0 0 0 0 10 

10 0 0.1 0.5 0.4 0 0 0 0 0 0 10 
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Table B. 5 Transition probability and intensity coefficient of Jw states. 

State i 

Pij for Jw 

ci State j 

1 2 3 4 5 6 

1 0 1 0 0 0 0 0.014 

2 1 0 0 0 0 0 0.160 

3 0.444 0.556 0 0 0 0 10 

4 0.444 0.556 0 0 0 0 10 

5 0.444 0.556 0 0 0 0 10 

6 0.444 0.556 0 0 0 0 10 

Table B. 6 Transition probability and intensity coefficient of SRF states. 

State i 

Pij for SRF 

ci State j 

1 2 3 4 5 6 7 8 9 

1 0 0 0 0 1 0 0 0 0 10 

2 0 0 0 0 1 0 0 0 0 10 

3 0 0 0 0 1 0 0 0 0 10 

4 0 0 0 0 1 0 0 0 0 10 

5 0 0 0 0.5 0 0.5 0 0 0 0.0025 

6 0 0 0 0 1 0 0 0 0 10 

7 0 0 0 0 1 0 0 0 0 10 

8 0 0 0 0 1 0 0 0 0 10 

9 0 0 0 0 1 0 0 0 0 10 
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APPENDIX C - LIKELIHOOD MATRIX FOR EACH STATE OF Q-PARAMETERS 

Table C. 1 Likelihood matrix of RQD states. 

State i 

Lij=P[Y(k)=j|X(k)=i] for RQD 

State j 

1 2 3 4 

1 0.95 0.05 0 0 

2 0.05 0.9 0.05 0 

3 0 0.05 0.9 0.05 

4 0 0 0.05 0.95 

Table C. 2 Likelihood matrix of Jn states. 

State 

i 

Lij=P[Y(k)=j|X(k)=i] for Jn 

State j 

1 2 3 4 5 6 7 8 9 

1 0.95 0.05 0 0 0 0 0 0 0 

2 0.05 0.9 0.05 0 0 0 0 0 0 

3 0 0.05 0.9 0.05 0 0 0 0 0 

4 0 0 0.05 0.9 0.05 0 0 0 0 

5 0 0 0 0.05 0.9 0.05 0 0 0 

6 0 0 0 0 0.05 0.9 0.05 0 0 

7 0 0 0 0 0 0.05 0.9 0.05 0 

8 0 0 0 0 0 0 0.05 0.9 0.05 

9 0 0 0 0 0 0 0 0.05 0.95 
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Table C. 3 Likelihood matrix of Jr states. 

State i 

Lij=P[Y(k)=j|X(k)=i] for Jr 

State j 

1 2 3 4 5 6 7 

1 0.95 0.05 0 0 0 0 0 

2 0 0.9 0.05 0.05 0 0 0 

3 0 0.05 0.85 0.05 0.05 0 0 

4 0 0.05 0.05 0.85 0.05 0 0 

5 0 0 0.05 0.05 0.85 0.05 0 

6 0 0 0 0.05 0.05 0.9 0 

7 0 0 0 0 0 0.05 0.95 

Table C. 4 Likelihood matrix of Ja states. 

State 

i 

Lij=P[Y(k)=j|X(k)=i] for Ja 

State j 

1 2 3 4 5 6 7 8 9 10 

1 0.9 0.05 0.05 0 0 0 0 0 0 0 

2 0.05 0.85 0.05 0.05 0 0 0 0 0 0 

3 0 0.05 0.85 0.05 0.05 0 0 0 0 0 

4 0 0.05 0.05 0.85 0.05 0 0 0 0 0 

5 0 0 0.05 0.05 0.85 0.05 0 0 0 0 

6 0 0 0 0.05 0.05 0.85 0.05 0 0 0 

7 0 0 0 0 0.05 0.05 0.85 0.05 0 0 

8 0 0 0 0 0 0.05 0.05 0.85 0.05 0 

9 0 0 0 0 0 0 0.05 0.05 0.85 0.05 

10 0 0 0 0 0 0 0 0 0.1 0.9 
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Table C. 5 Likelihood matrix of Jw states. 

State i 

Lij=P[Y(k)=j|X(k)=i] for Jw 

State j 

1 2 3 4 5 6 

1 0.95 0.05 0 0 0 0 

2 0.05 0.9 0.05 0 0 0 

3 0 0.05 0.9 0.05 0 0 

4 0 0 0.05 0.9 0.05 0 

5 0 0 0 0.05 0.9 0.05 

6 0 0 0 0 0.1 0.9 

Table C. 6 Likelihood matrix of SRF states. 

State 

i 

Lij=P[Y(k)=j|X(k)=i] for SRF 

State j 

1 2 3 4 5 6 7 8 9 

1 0.9 0.1 0 0 0 0 0 0 0 

2 0.1 0.9 0 0 0 0 0 0 0 

3 0 0.05 0.9 0.05 0 0 0 0 0 

4 0 0.05 0.05 0.9 0 0 0 0 0 

5 0 0 0 0 0.9 0.1 0 0 0 

6 0 0 0 0 0.1 0.9 0 0 0 

7 0 0 0 0 0 0.05 0.9 0.05 0 

8 0 0 0 0 0 0 0.05 0.9 0.05 

9 0 0 0 0 0 0 0 0.1 0.9 
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APPENDIX - D ACCURACY PLOTS OF PROBABILISTIC PREDICTION MODEL 

USING INPUT DATA FROM SUBSECTION 1 WITH 200M AND 300M 

The prediction accuracy has been evaluated using the accuracy plots for the probabilistic 

prediction models using the input Q data from Subsection 1 with 200 m and 300 m. The accuracy 

plots have been made for the predicted Q-parameters, including RQD and Jn, Q value, Q-based 

rock class, GC1 with “good” rock and GC2 with “fair” rock. The comparison results have also 

been summarized at the end of this section. 

 (1) RQD 

The accuracy plots of predicted RQD for the 200 m and 300 m cases are shown in Figure 

D.1. It is found that the calculated R2 value is higher for the 300m case (0.70) than the 200 m case 

(0.58) and that the RMSE value is lower for the former (0.11) than the latter (0.13). This has 

indicated that the prediction accuracy is higher with more Q data as the input for the prediction 

model. 
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Figure D. 1 Accuracy plots for predicted RQD: (A): the 200 m case; (B): the 300 m case 

(2) Jn 

The accuracy plots for the predicted Jn are demonstrated in Figure D.2. Similar to the 

predicted results for RQD, the prediction accuracy is higher for the 300 m case than the 200 m 

case. However, it is seen that the R2 values for the predicted Jn are lower than those for the RQD 

and the RMSE values are higher for the former compared to the latter. This reveals the predicted 

RQD has higher prediction accuracy than the predicted Jn results, which is consistent with the 

results derived from the 400 m case. 
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Figure D. 2 Accuracy plots for predicted Jn: (A) the 200 m case; (B) the 300 m case 

(3) Q value 

The accuracy plots for the predicted Q value are depicted in Figure D.3. It is seen that both 

the accuracy plots for both the 200 m and 300 m cases are close to the 1:1 line, indicating the very 

good prediction accuracy based on the comparison criterion of the Q value.  The derived R2 values 

are as high as 0.99 and the RMSE values are as low as around 0.05. It reveals that the difference 

of prediction accuracy for these two cases is insignificant. This may be related to the approach 

used for generating accuracy plots. In this study, the probability intervals, i.e. (1-p)/2 ~ (1+p)/2, 

are relatively wide using the symmetric probability interval centered on the cumulative distribution 

function proposed by Goovaerts (2001) for generating accuracy plots of Q value. Accuracy plots 

can be generated using other approaches for comparison.  
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Figure D. 3 Accuracy plots for predicted Q value: (A) the 200 m case; (B) the 300 m case 

(4) Q-based rock class 

The accuracy plots for Q-based rock class have also been generated, as shown in Figure 

D.4. Similar to the predicted results for Q-parameters, it is clearly seen that the prediction accuracy 

has increased significantly, especially based on the measure of R2 value, with more input Q data 

from a subsection with additional 100 m. In addition, the accuracy plots for predicted dominant 

GC1 with “good” rock and GC2 with “fair” rock have also been made, as demonstrated in Figure 

D. 5 and Figure D. 6. 
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Figure D. 4 Accuracy plots for predicted Q class: (A) the 200 m case; (B) the 300 m case 

As can be seen in Figure D.5, for the accuracy plot of GC1, the significant increase of the 

prediction accuracy can be clearly seen from the 200 m case to the 300 m case. However, for the 

accuracy plot of GC2, there is a slight increase of the R2 value from the 200 m case (0.84) to the 

300 m case (0.87). It means that the predicted GC1 results are more sensitive to the increase of 

input data than the predicted GC2 results. Overall, both predicted GC1 and GC2 results show that 

the prediction accuracy increases with the additional Q data as the input. 
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Figure D. 5 Accuracy plots for predicted GC1: (A) the 200 m case; (B) the 300 m case 

 

 

Figure D. 6 Accuracy plots for predicted GC2: (A) the 200 m case; (B) the 300 m case 
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The comparison of prediction accuracy from the accuracy plots is summarized in Table D. 

1 for three cases, including the 200 m, 300 m and 400 cases. It can be seen that the prediction 

accuracy increases with the input data from Subsection 1 with longer length based on comparison 

criteria of Q-parameters, Q-based rock class and individual dominant GC1 and GC2. The 

prediction accuracy based on the Q value criterion is insensitive to the more input data. Note that 

the accuracy plot for the predicted Q value was generated using the approach proposed by 

Goovaerts (2001), and prediction accuracy can also be evaluated for the accuracy plot using other 

approaches for comparison. It is suggested to validate the predicted results using more comparison 

criteria between the predicted and actual results. In this study, the prediction accuracy is improved 

with input Q data from longer Subsection 1 based on all the comparison criteria, and the best 

prediction accuracy is achieved in the 400 m case. 

Table D. 1 Summary of measures of prediction accuracy from accuracy plots 

Criterion for 

validation 

Length of 

Subsection 1 as 

model input (m) 

RMSE (Root Mean 

Square Error) 
R2 

RQD 

200 0.13 0.58 

300 0.11 0.7 

400 0.08 0.88 

Jn 

200 0.18 0.51 

300 0.14 0.6 

400 0.11 0.81 

Q value 

200 0.05 0.99 

300 0.04 0.99 

400 0.04 0.99 

Q class 

200 0.13 0.55 

300 0.12 0.79 

400 0.07 0.92 

GC1 

200 0.17 0.76 

300 0.10 0.92 

400 0.10 0.96 

GC2  

200 0.14 0.84 

300 0.15 0.87 

400 0.10 0.98 
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APPENDIX E - APPROXIMATE CALCULATION APPROACH FOR STATISTICS OF 

Q VALUE 

1. Statistics of the product of three random variables 

(1) Statistics of the product of three random variables 

X A B C=         (E.1) 

It is seen in Eq. (E.1) that the dependent variable is the product of random variables A, B and C. 

It is assumed herein that random variables A, B and C are mutually independent. Statistics 

(expected value ( )E X , variance ( )Var X , coefficient of variation (COV) ( )X ) of variable X 

can be obtained given statistics of A, B and C as follows (Benjamin and Cornell 2014): 

( ) ( ) ( ) ( ) ( ) ( ) ( )E X E ABC E AB E C E A E B E C= = =     (D.2) 
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(2) Statistics of the ratio of two random variables 

It is defined the dependent variable G is the ratio of random variable R to S, and it can be expressed 

as ( , )
R

G g R S
S

= = ( , 0)R S  . The approximations for ( )E G and ( )Var G can be derived using 

Taylor expansions of function as follows ()g (Elandt-Johnson and Johnson 1980; Stuart and Ord 

1998): 

2 3

( ) ( , ) ( ) ( )
( ) ( )

( ) [ ( )] [ ( )]

R E R Cov R S Var S E R
E G E

S E S E S E S
=  − +      (E.5) 
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2

2 2 2

[ ( )] ( ) ( , ) ( )
( 2 )
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E R Var R Cov R S Var S

E S E R E R E S E S
= − +       (E.6) 

In particular, if random variables R and S are independent, ( , ) 0Cov R S = . Eqs. (E.5) and (E.6) can 

be written as Eqs. (E.7) and (E.8), respectively. 

3
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The approximate calculation for the COV of dependent variable G can be derived as follows: 
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2. Statistics of the Q value 

Recall  

RQD Jr Jw
Q

Jn Ja SRF
=        (E.10) 

and                                 X A B C=          (E.11) 

where 

RQD
A

Jn
= , 

Jr
B

Ja
= ,

Jw
C

SRF
=     (E.12) 

Integrating Eqs. (E.7), (E.11) and (E.12), the expected value of Q value can be derived as: 
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Integrating Eqs. (E.8), (E.11) and (E.12), the standard deviation of Q value can be derived as: 
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Integrating Eqs. (E.9), (E.11) and (E.12), the COV of Q value can be derived as: 
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The COV of Q value can also be calculated based on its definition, which is the ratio of standard 

deviation to its expected value. In this way, it is calculated by dividing the square root of result in 

Eq. (E.14) by the result in Eq. (E.13) 
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APPENDIX F – DATA AND RESULTS 

INPUT AND OUTPUT OF PROBABILISTIC PREDICTION MODEL 

Table F.1 Input of the probabilistic prediction model in Subsection 1 

Chainage (m) Actual Q-parameter value and state 

From To RQD RQD state Jn Jn state Jr Jr state Ja Ja state Jw Jw state SRF SRF state 

1610 1615 80 4 6 5 1.5 4 2 3 1 1 1 5 

1615 1620 80 4 6 5 1.5 4 2 3 1 1 1 5 

1620 1625 80 4 6 5 1.5 4 2 3 1 1 1 5 

1625 1630 80 4 6 5 1.5 4 2 3 1 1 1 5 

1630 1635 60 3 6 5 1.5 4 2 3 1 1 1 5 

1635 1640 60 3 6 5 1.5 4 2 3 1 1 1 5 

1640 1645 60 3 6 5 1.5 4 2 3 1 1 1 5 

1645 1650 85 4 6 5 1.5 4 2 3 1 1 1 5 

1650 1655 85 4 6 5 1.5 4 2 3 1 1 1 5 

1655 1660 85 4 6 5 1.5 4 2 3 1 1 1 5 

1660 1665 55 3 6 5 1.5 4 3 4 1 1 1 5 

1665 1670 55 3 6 5 1.5 4 3 4 1 1 1 5 

1670 1675 55 3 6 5 1.5 4 3 4 1 1 1 5 

1675 1680 40 2 6 5 1.5 4 3 4 1 1 1 5 

1680 1685 40 2 6 5 1.5 4 3 4 1 1 1 5 

1685 1690 70 3 6 5 1.5 4 2 3 1 1 1 5 

1690 1695 45 2 6 5 1.5 4 3 4 1 1 1 5 

1695 1700 45 2 6 5 1.5 4 3 4 1 1 1 5 

1700 1705 45 2 6 5 1.5 4 3 4 1 1 1 5 

1705 1710 45 2 6 5 1.5 4 3 4 1 1 1 5 

1710 1715 45 2 6 5 1.5 4 3 4 1 1 1 5 

1715 1720 80 4 6 5 1.5 4 3 4 1 1 1 5 

1720 1725 80 4 6 5 1.5 4 3 4 1 1 1 5 

1725 1730 80 4 6 5 1.5 4 3 4 1 1 1 5 

1730 1735 80 4 6 5 1.5 4 3 4 1 1 1 5 

1735 1740 80 4 6 5 1.5 4 3 4 1 1 1 5 

1740 1745 40 2 6 5 1.5 4 3 4 1 1 1 5 

1745 1750 40 2 6 5 1.5 4 3 4 1 1 1 5 

1750 1755 95 4 4 4 1.5 4 2 3 1 1 1 5 

1755 1760 95 4 4 4 1.5 4 2 3 1 1 1 5 

1760 1765 95 4 4 4 1.5 4 2 3 1 1 1 5 

1765 1770 100 4 3 3 4 1 1 2 1 1 1 5 

1770 1775 85 4 3 3 1.5 4 2 3 1 1 1 5 
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Chainage (m) Actual Q-parameter value and state 

From To RQD RQD state Jn Jn state Jr Jr state Ja Ja state Jw Jw state SRF SRF state 

1775 1780 85 4 3 3 1.5 4 2 3 1 1 1 5 

1780 1785 85 4 3 3 1.5 4 2 3 0.66 2 1 5 

1785 1790 85 4 6 5 1.5 4 2 3 1 1 1 5 

1790 1795 70 3 6 5 1.5 4 2 3 1 1 1 5 

1795 1800 70 3 6 5 1.5 4 2 3 1 1 1 5 

1800 1805 50 2 6 5 1 1 2 3 0.66 2 1 5 

1805 1810 70 3 6 5 1.5 4 2 3 1 1 1 5 

1810 1815 80 4 6 5 1.5 4 2 3 0.66 2 1 5 

1815 1820 80 4 6 5 1.5 4 2 3 0.66 2 1 5 

1820 1825 60 3 6 5 1.5 4 2 3 1 1 1 5 

1825 1830 60 3 6 5 1.5 4 2 3 1 1 1 5 

1830 1835 60 3 6 5 1.5 4 2 3 1 1 1 5 

1835 1840 60 3 6 5 1.5 4 2 3 1 1 1 5 

1840 1845 40 3 6 5 1.5 4 2 3 1 1 1 5 

1845 1850 40 3 6 5 1.5 4 2 3 1 1 1 5 

1850 1855 40 3 6 5 1.5 4 2 3 0.66 2 1 5 

1855 1860 40 3 6 5 1.5 4 2 3 0.66 2 1 5 

1860 1865 80 4 6 5 1.5 4 2 3 1 1 1 5 

1865 1870 80 4 6 5 1.5 4 2 3 1 1 1 5 

1870 1875 60 3 6 5 1.5 4 3 4 1 1 1 5 

1875 1880 60 3 6 5 1.5 4 3 4 1 1 1 5 

1880 1885 80 4 6 5 1.5 4 2 3 1 1 1 5 

1885 1890 70 3 6 5 1.5 4 2 3 1 1 1 5 

1890 1895 70 3 6 5 1.5 4 2 3 1 1 1 5 

1895 1900 70 3 6 5 1.5 4 2 3 1 1 1 5 

1900 1905 80 4 6 5 1.5 4 2 3 1 1 1 5 

1905 1910 80 4 6 5 1.5 4 2 3 1 1 1 5 

1910 1915 70 3 3 3 1.5 4 2 3 1 1 1 5 

1915 1920 80 4 4 4 1.5 4 3 4 1 1 1 5 

1920 1925 80 4 4 4 1.5 4 3 4 1 1 1 5 

1925 1930 80 4 4 4 1.5 4 3 4 1 1 1 5 

1930 1935 80 4 4 4 1.5 4 3 4 1 1 1 5 

1935 1940 60 3 4 4 1.5 4 3 4 1 1 1 5 

1940 1945 80 4 6 5 1.5 4 2 3 1 1 1 5 

1945 1950 80 4 6 5 1.5 4 2 3 1 1 1 5 

1950 1955 80 4 6 5 1.5 4 2 3 1 1 1 5 

1955 1960 80 4 6 5 1.5 4 2 3 1 1 1 5 

1960 1965 80 4 6 5 1.5 4 2 3 1 1 1 5 

1965 1970 80 4 6 5 1.5 4 2 3 1 1 1 5 
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Chainage (m) Actual Q-parameter value and state 

From To RQD RQD state Jn Jn state Jr Jr state Ja Ja state Jw Jw state SRF SRF state 

1970 1975 60 3 4 4 1.5 4 2 3 1 1 1 5 

1975 1980 70 3 4 4 1.5 4 2 3 1 1 1 5 

1980 1985 70 3 4 4 1.5 4 2 3 1 1 1 5 

1985 1990 60 3 4 4 1 5 2 3 1 1 1 5 

1990 1995 70 3 6 5 1.5 4 2 3 1 1 1 5 

1995 2000 70 3 6 5 1.5 4 2 3 1 1 1 5 

2000 2005 70 3 6 5 1.5 4 2 3 1 1 1 5 

2005 2010 70 3 6 5 1.5 4 2 3 1 1 1 5 

2010 2015 80 4 6 5 1.5 4 2 3 1 1 1 5 

Table F.2 Comparison between predicted and actual RQD in Subsection 2 

Chainage (m) Predicted state probability Actual value and state 

From To State 1 State 2 State 3 State 4 Actual value Actual state 

2010 2015 0.0% 0.0% 5.0% 95.0% 80 4 

2015 2020 0.0% 1.3% 13.8% 84.9% 80 4 

2020 2025 0.0% 2.4% 22.1% 75.5% 80 4 

2025 2030 0.0% 3.4% 30.1% 66.5% 80 4 

2030 2035 0.0% 4.2% 37.9% 57.9% 80 4 

2035 2040 0.0% 4.7% 45.7% 49.5% 80 3 

2040 2045 0.0% 5.1% 53.7% 41.1% 60 3 

2045 2050 0.0% 5.4% 62.0% 32.7% 80 4 

2050 2055 0.0% 5.4% 70.6% 23.9% 50 3 

2055 2060 0.0% 5.3% 79.9% 14.8% 70 3 

2060 2065 0.0% 5.0% 90.0% 5.0% 30 3 

2065 2070 0.0% 5.6% 86.6% 7.7% 70 3 

2070 2075 0.0% 6.1% 84.1% 9.8% 65 3 

2075 2080 0.0% 6.4% 82.3% 11.3% 65 3 

2080 2085 0.0% 6.6% 81.2% 12.2% 70 3 

2085 2090 0.0% 6.6% 80.9% 12.6% 70 3 

2090 2095 0.0% 6.5% 81.2% 12.3% 70 3 

2095 2100 0.0% 6.3% 82.3% 11.5% 70 3 

2100 2105 0.0% 5.9% 84.1% 10.0% 70 3 

2105 2110 0.0% 5.5% 86.6% 7.8% 70 3 

2110 2115 0.0% 5.0% 90.0% 5.0% 75 3 

2115 2120 0.0% 5.6% 86.6% 7.7% 75 3 

2120 2125 0.0% 6.1% 84.1% 9.8% 60 3 

2125 2130 0.0% 6.4% 82.3% 11.3% 65 3 

2130 2135 0.0% 6.6% 81.2% 12.2% 65 3 

2135 2140 0.0% 6.6% 80.9% 12.6% 80 4 
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Chainage (m) Predicted state probability Actual value and state 

From To State 1 State 2 State 3 State 4 Actual value Actual state 

2140 2145 0.0% 6.5% 81.2% 12.3% 70 3 

2145 2150 0.0% 6.3% 82.3% 11.5% 70 3 

2150 2155 0.0% 5.9% 84.1% 10.0% 70 3 

2155 2160 0.0% 5.5% 86.6% 7.8% 70 3 

2160 2165 0.0% 5.0% 90.0% 5.0% 60 3 

2165 2170 0.0% 5.6% 86.6% 7.7% 80 4 

2170 2175 0.0% 6.1% 84.1% 9.8% 80 4 

2175 2180 0.0% 6.4% 82.3% 11.3% 65 3 

2180 2185 0.0% 6.6% 81.2% 12.2% 70 3 

2185 2190 0.0% 6.6% 80.9% 12.6% 70 3 

2190 2195 0.0% 6.5% 81.2% 12.3% 60 3 

2195 2200 0.0% 6.3% 82.3% 11.5% 60 3 

2200 2205 0.0% 5.9% 84.1% 10.0% 65 3 

2205 2210 0.0% 5.5% 86.6% 7.8% 65 3 

2210 2215 0.0% 5.0% 90.0% 5.0% 70 3 

2215 2220 0.0% 6.3% 79.4% 14.3% 70 3 

2220 2225 0.0% 7.1% 69.7% 23.2% 70 3 

2225 2230 0.0% 7.6% 60.7% 31.7% 70 3 

2230 2235 0.0% 7.6% 52.2% 40.1% 80 3 

2235 2240 0.0% 7.3% 44.2% 48.5% 80 3 

2240 2245 0.0% 6.6% 36.4% 57.0% 85 4 

2245 2250 0.0% 5.6% 28.7% 65.7% 85 4 

2250 2255 0.0% 4.1% 21.0% 74.9% 85 4 

2255 2260 0.0% 2.3% 13.2% 84.6% 85 4 

2260 2265 0.0% 0.0% 5.0% 95.0% 80 4 

2265 2270 0.0% 0.8% 7.3% 91.9% 70 3 

2270 2275 0.0% 1.4% 9.1% 89.5% 60 3 

2275 2280 0.0% 1.9% 10.3% 87.8% 60 3 

2280 2285 0.0% 2.2% 10.9% 86.8% 70 3 

2285 2290 0.0% 2.4% 11.1% 86.5% 80 3 

2290 2295 0.0% 2.3% 10.9% 86.8% 80 4 

2295 2300 0.0% 2.1% 10.1% 87.8% 80 4 

2300 2305 0.0% 1.6% 8.9% 89.5% 90 4 

2305 2310 0.0% 0.9% 7.2% 91.9% 90 4 

2310 2315 0.0% 0.0% 5.0% 95.0% 90 4 

2315 2320 0.0% 0.8% 7.3% 91.9% 90 4 

2320 2325 0.0% 1.4% 9.1% 89.5% 90 4 

2325 2330 0.0% 1.9% 10.3% 87.8% 90 4 

2330 2335 0.0% 2.2% 10.9% 86.8% 85 4 



 

186 

 

Chainage (m) Predicted state probability Actual value and state 

From To State 1 State 2 State 3 State 4 Actual value Actual state 

2335 2340 0.0% 2.4% 11.1% 86.5% 85 4 

2340 2345 0.0% 2.3% 10.9% 86.8% 80 4 

2345 2350 0.0% 2.1% 10.1% 87.8% 80 4 

2350 2355 0.0% 1.6% 8.9% 89.5% 70 3 

2355 2360 0.0% 0.9% 7.2% 91.9% 85 4 

2360 2365 0.0% 0.0% 5.0% 95.0% 80 4 

2365 2370 0.0% 0.8% 7.3% 91.9% 80 4 

2370 2375 0.0% 1.4% 9.1% 89.5% 90 4 

2375 2380 0.0% 1.9% 10.3% 87.8% 90 4 

2380 2385 0.0% 2.2% 10.9% 86.8% 80 4 

2385 2390 0.0% 2.4% 11.1% 86.5% 80 4 

2390 2395 0.0% 2.3% 10.9% 86.8% 50 2 

2395 2400 0.0% 2.1% 10.1% 87.8% 80 4 

2400 2405 0.0% 1.6% 8.9% 89.5% 80 4 

2405 2410 0.0% 0.9% 7.2% 91.9% 90 4 

2410 2415 0.0% 0.0% 5.0% 95.0% 90 4 

2415 2420 0.0% 0.8% 7.3% 91.9% 95 4 

2420 2425 0.0% 1.4% 9.1% 89.5% 95 4 

2425 2430 0.0% 1.9% 10.3% 87.8% 95 4 

2430 2435 0.0% 2.2% 10.9% 86.8% 95 4 

2435 2440 0.0% 2.4% 11.1% 86.5% 95 4 

2440 2445 0.0% 2.3% 10.9% 86.8% 90 4 

2445 2450 0.0% 2.1% 10.1% 87.8% 90 4 

2450 2455 0.0% 1.6% 8.9% 89.5% 95 4 

2455 2460 0.0% 0.9% 7.2% 91.9% 95 4 

2460 2465 0.0% 0.0% 5.0% 95.0% 90 4 

2465 2470 0.0% 0.8% 7.3% 91.9% 90 4 

2470 2475 0.0% 1.4% 9.1% 89.5% 85 4 

2475 2480 0.0% 1.9% 10.3% 87.8% 85 4 

2480 2485 0.0% 2.2% 10.9% 86.8% 85 4 

2485 2490 0.0% 2.4% 11.1% 86.5% 70 3 

2490 2495 0.0% 2.3% 10.9% 86.8% 50 2 

2495 2500 0.0% 2.1% 10.1% 87.8% 50 2 

2500 2505 0.0% 1.6% 8.9% 89.5% 60 3 

2505 2510 0.0% 0.9% 7.2% 91.9% 80 4 

2510 2515 0.0% 0.0% 5.0% 95.0% 90 4 

2515 2520 0.0% 0.8% 7.3% 91.9% 90 4 

2520 2525 0.0% 1.4% 9.1% 89.5% 85 4 

2525 2530 0.0% 1.9% 10.3% 87.8% 85 4 
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Chainage (m) Predicted state probability Actual value and state 

From To State 1 State 2 State 3 State 4 Actual value Actual state 

2530 2535 0.0% 2.2% 10.9% 86.8% 80 4 

2535 2540 0.0% 2.4% 11.1% 86.5% 80 4 

2540 2545 0.0% 2.3% 10.9% 86.8% 80 4 

2545 2550 0.0% 2.1% 10.1% 87.8% 70 3 

2550 2555 0.0% 1.6% 8.9% 89.5% 70 3 

2555 2560 0.0% 0.9% 7.2% 91.9% 85 4 

2560 2565 0.0% 0.0% 5.0% 95.0% 90 4 

2565 2570 0.0% 0.8% 7.3% 91.9% 90 4 

2570 2575 0.0% 1.4% 9.1% 89.5% 100 4 

2575 2580 0.0% 1.9% 10.3% 87.8% 100 4 

2580 2585 0.0% 2.2% 10.9% 86.8% 100 4 

2585 2590 0.0% 2.4% 11.1% 86.5% 100 4 

2590 2595 0.0% 2.3% 10.9% 86.8% 100 4 

2595 2600 0.0% 2.1% 10.1% 87.8% 100 4 

2600 2605 0.0% 1.6% 8.9% 89.5% 100 4 

2605 2610 0.0% 0.9% 7.2% 91.9% 100 4 

2610 2615 0.0% 0.0% 5.0% 95.0% 100 4 

Table F.3 Comparison between predicted and actual Jn in Subsection 2 

Chainage (m) Predicted state probability Actual 

value 

Actual 

state From  To State 1 State 2 State 3 State 4 State 5 State 6 State 7 State 8 State 9 

2010 2015 0.0% 0.0% 0.0% 5.0% 90.0% 5.0% 0.0% 0.0% 0.0% 6 5 

2015 2020 0.0% 0.0% 1.2% 6.4% 92.4% 0.0% 0.0% 0.0% 0.0% 6 5 

2020 2025 0.0% 0.0% 1.7% 6.1% 92.2% 0.0% 0.0% 0.0% 0.0% 6 5 

2025 2030 0.0% 0.0% 2.1% 5.9% 92.0% 0.0% 0.0% 0.0% 0.0% 6 5 

2030 2035 0.0% 0.0% 2.5% 5.7% 91.8% 0.0% 0.0% 0.0% 0.0% 6 5 

2035 2040 0.0% 0.0% 2.9% 5.5% 91.5% 0.0% 0.0% 0.0% 0.0% 6 4 

2040 2045 0.0% 0.0% 3.3% 5.4% 91.3% 0.0% 0.0% 0.0% 0.0% 4 5 

2045 2050 0.0% 0.0% 3.7% 5.3% 91.0% 0.0% 0.0% 0.0% 0.0% 6 5 

2050 2055 0.0% 0.0% 4.2% 5.2% 90.6% 0.0% 0.0% 0.0% 0.0% 6 5 

2055 2060 0.0% 0.0% 4.6% 5.1% 90.3% 0.0% 0.0% 0.0% 0.0% 6 5 

2060 2065 0.0% 0.0% 0.0% 5.0% 90.0% 5.0% 0.0% 0.0% 0.0% 4 5 

2065 2070 0.0% 0.0% 1.2% 6.4% 92.4% 0.0% 0.0% 0.0% 0.0% 6 5 

2070 2075 0.0% 0.0% 1.7% 6.1% 92.2% 0.0% 0.0% 0.0% 0.0% 6 5 

2075 2080 0.0% 0.0% 2.1% 5.9% 92.0% 0.0% 0.0% 0.0% 0.0% 6 5 

2080 2085 0.0% 0.0% 2.5% 5.7% 91.8% 0.0% 0.0% 0.0% 0.0% 6 5 

2085 2090 0.0% 0.0% 2.9% 5.5% 91.5% 0.0% 0.0% 0.0% 0.0% 6 5 

2090 2095 0.0% 0.0% 3.3% 5.4% 91.3% 0.0% 0.0% 0.0% 0.0% 6 5 

2095 2100 0.0% 0.0% 3.7% 5.3% 91.0% 0.0% 0.0% 0.0% 0.0% 6 5 
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Chainage (m) Predicted state probability Actual 

value 

Actual 

state From  To State 1 State 2 State 3 State 4 State 5 State 6 State 7 State 8 State 9 

2100 2105 0.0% 0.0% 4.2% 5.2% 90.6% 0.0% 0.0% 0.0% 0.0% 6 5 

2105 2110 0.0% 0.0% 4.6% 5.1% 90.3% 0.0% 0.0% 0.0% 0.0% 6 5 

2110 2115 0.0% 0.0% 0.0% 5.0% 90.0% 5.0% 0.0% 0.0% 0.0% 6 5 

2115 2120 0.0% 0.0% 1.2% 6.4% 92.4% 0.0% 0.0% 0.0% 0.0% 6 5 

2120 2125 0.0% 0.0% 1.7% 6.1% 92.2% 0.0% 0.0% 0.0% 0.0% 6 5 

2125 2130 0.0% 0.0% 2.1% 5.9% 92.0% 0.0% 0.0% 0.0% 0.0% 6 5 

2130 2135 0.0% 0.0% 2.5% 5.7% 91.8% 0.0% 0.0% 0.0% 0.0% 6 5 

2135 2140 0.0% 0.0% 2.9% 5.5% 91.5% 0.0% 0.0% 0.0% 0.0% 6 5 

2140 2145 0.0% 0.0% 3.3% 5.4% 91.3% 0.0% 0.0% 0.0% 0.0% 6 5 

2145 2150 0.0% 0.0% 3.7% 5.3% 91.0% 0.0% 0.0% 0.0% 0.0% 6 5 

2150 2155 0.0% 0.0% 4.2% 5.2% 90.6% 0.0% 0.0% 0.0% 0.0% 6 5 

2155 2160 0.0% 0.0% 4.6% 5.1% 90.3% 0.0% 0.0% 0.0% 0.0% 6 5 

2160 2165 0.0% 0.0% 0.0% 5.0% 90.0% 5.0% 0.0% 0.0% 0.0% 6 5 

2165 2170 0.0% 0.0% 1.2% 6.4% 92.4% 0.0% 0.0% 0.0% 0.0% 4 4 

2170 2175 0.0% 0.0% 1.7% 6.1% 92.2% 0.0% 0.0% 0.0% 0.0% 4 4 

2175 2180 0.0% 0.0% 2.1% 5.9% 92.0% 0.0% 0.0% 0.0% 0.0% 4 4 

2180 2185 0.0% 0.0% 2.5% 5.7% 91.8% 0.0% 0.0% 0.0% 0.0% 6 5 

2185 2190 0.0% 0.0% 2.9% 5.5% 91.5% 0.0% 0.0% 0.0% 0.0% 6 5 

2190 2195 0.0% 0.0% 3.3% 5.4% 91.3% 0.0% 0.0% 0.0% 0.0% 6 5 

2195 2200 0.0% 0.0% 3.7% 5.3% 91.0% 0.0% 0.0% 0.0% 0.0% 6 5 

2200 2205 0.0% 0.0% 4.2% 5.2% 90.6% 0.0% 0.0% 0.0% 0.0% 6 5 

2205 2210 0.0% 0.0% 4.6% 5.1% 90.3% 0.0% 0.0% 0.0% 0.0% 6 5 

2210 2215 0.0% 0.0% 0.0% 5.0% 90.0% 5.0% 0.0% 0.0% 0.0% 4 5 

2215 2220 0.0% 0.0% 8.9% 4.9% 86.2% 0.0% 0.0% 0.0% 0.0% 4 5 

2220 2225 0.0% 0.0% 14.8% 4.3% 80.9% 0.0% 0.0% 0.0% 0.0% 6 5 

2225 2230 0.0% 0.0% 21.3% 3.9% 74.7% 0.0% 0.0% 0.0% 0.0% 6 5 

2230 2235 0.0% 0.0% 28.6% 3.6% 67.7% 0.0% 0.0% 0.0% 0.0% 3 3 

2235 2240 0.0% 0.0% 36.8% 3.4% 59.7% 0.0% 0.0% 0.0% 0.0% 3 3 

2240 2245 0.0% 0.0% 45.9% 3.4% 50.6% 0.0% 0.0% 0.0% 0.0% 3 3 

2245 2250 0.0% 0.0% 56.2% 3.5% 40.3% 0.0% 0.0% 0.0% 0.0% 3 3 

2250 2255 0.0% 0.0% 67.7% 3.7% 28.5% 0.0% 0.0% 0.0% 0.0% 6 3 

2255 2260 0.0% 0.0% 80.6% 4.2% 15.1% 0.0% 0.0% 0.1% 0.0% 6 3 

2260 2265 0.0% 5.0% 90.0% 5.0% 0.0% 0.0% 0.0% 0.0% 0.0% 3 3 

2265 2270 0.0% 0.0% 75.8% 11.8% 12.4% 0.0% 0.0% 0.0% 0.0% 3 3 

2270 2275 0.0% 0.0% 62.7% 15.1% 22.2% 0.0% 0.0% 0.0% 0.0% 6 5 

2275 2280 0.0% 0.0% 51.2% 16.9% 31.8% 0.0% 0.0% 0.0% 0.0% 6 5 

2280 2285 0.0% 0.0% 41.3% 17.5% 41.2% 0.0% 0.0% 0.0% 0.0% 6 5 

2285 2290 0.0% 0.0% 32.6% 17.2% 50.2% 0.0% 0.0% 0.0% 0.0% 6 5 

2290 2295 0.0% 0.0% 25.2% 16.0% 58.8% 0.0% 0.0% 0.0% 0.0% 6 5 
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Chainage (m) Predicted state probability Actual 

value 

Actual 

state From  To State 1 State 2 State 3 State 4 State 5 State 6 State 7 State 8 State 9 

2295 2300 0.0% 0.0% 18.8% 14.1% 67.1% 0.0% 0.0% 0.0% 0.0% 6 5 

2300 2305 0.0% 0.0% 13.3% 11.6% 75.0% 0.0% 0.0% 0.0% 0.0% 3 3 

2305 2310 0.0% 0.0% 8.8% 8.6% 82.6% 0.0% 0.0% 0.0% 0.0% 3 3 

2310 2315 0.0% 0.0% 0.0% 5.0% 90.0% 5.0% 0.0% 0.0% 0.0% 6 5 

2315 2320 0.0% 0.0% 8.9% 4.9% 86.2% 0.0% 0.0% 0.0% 0.0% 6 5 

2320 2325 0.0% 0.0% 14.8% 4.3% 80.9% 0.0% 0.0% 0.0% 0.0% 6 5 

2325 2330 0.0% 0.0% 21.3% 3.9% 74.7% 0.0% 0.0% 0.0% 0.0% 6 5 

2330 2335 0.0% 0.0% 28.6% 3.6% 67.7% 0.0% 0.0% 0.0% 0.0% 3 5 

2335 2340 0.0% 0.0% 36.8% 3.4% 59.7% 0.0% 0.0% 0.0% 0.0% 3 3 

2340 2345 0.0% 0.0% 45.9% 3.4% 50.6% 0.0% 0.0% 0.0% 0.0% 3 3 

2345 2350 0.0% 0.0% 56.2% 3.5% 40.3% 0.0% 0.0% 0.0% 0.0% 3 3 

2350 2355 0.0% 0.0% 67.7% 3.7% 28.5% 0.0% 0.0% 0.0% 0.0% 3 3 

2355 2360 0.0% 0.0% 80.6% 4.2% 15.1% 0.0% 0.0% 0.1% 0.0% 3 3 

2360 2365 0.0% 5.0% 90.0% 5.0% 0.0% 0.0% 0.0% 0.0% 0.0% 3 3 

2365 2370 0.0% 0.0% 75.8% 11.8% 12.4% 0.0% 0.0% 0.0% 0.0% 3 3 

2370 2375 0.0% 0.0% 62.7% 15.1% 22.2% 0.0% 0.0% 0.0% 0.0% 3 3 

2375 2380 0.0% 0.0% 51.2% 16.9% 31.8% 0.0% 0.0% 0.0% 0.0% 3 3 

2380 2385 0.0% 0.0% 41.3% 17.5% 41.2% 0.0% 0.0% 0.0% 0.0% 3 3 

2385 2390 0.0% 0.0% 32.6% 17.2% 50.2% 0.0% 0.0% 0.0% 0.0% 6 5 

2390 2395 0.0% 0.0% 25.2% 16.0% 58.8% 0.0% 0.0% 0.0% 0.0% 4 4 

2395 2400 0.0% 0.0% 18.8% 14.1% 67.1% 0.0% 0.0% 0.0% 0.0% 6 5 

2400 2405 0.0% 0.0% 13.3% 11.6% 75.0% 0.0% 0.0% 0.0% 0.0% 6 5 

2405 2410 0.0% 0.0% 8.8% 8.6% 82.6% 0.0% 0.0% 0.0% 0.0% 6 5 

2410 2415 0.0% 0.0% 0.0% 5.0% 90.0% 5.0% 0.0% 0.0% 0.0% 6 5 

2415 2420 0.0% 0.0% 2.7% 11.3% 86.0% 0.0% 0.0% 0.0% 0.0% 6 5 

2420 2425 0.0% 0.0% 4.1% 15.3% 80.5% 0.0% 0.0% 0.0% 0.0% 6 5 

2425 2430 0.0% 0.0% 5.4% 20.1% 74.5% 0.0% 0.0% 0.0% 0.0% 6 5 

2430 2435 0.0% 0.0% 6.4% 25.7% 67.9% 0.0% 0.0% 0.0% 0.0% 6 5 

2435 2440 0.0% 0.0% 7.3% 32.3% 60.4% 0.0% 0.0% 0.0% 0.0% 6 5 

2440 2445 0.0% 0.0% 7.8% 40.2% 52.0% 0.0% 0.0% 0.0% 0.0% 4 4 

2445 2450 0.0% 0.0% 7.9% 49.6% 42.4% 0.0% 0.0% 0.0% 0.0% 4 4 

2450 2455 0.0% 0.0% 7.6% 60.8% 31.6% 0.0% 0.0% 0.0% 0.0% 4 4 

2455 2460 0.0% 0.0% 6.7% 74.1% 19.2% 0.0% 0.0% 0.1% 0.0% 4 4 

2460 2465 0.0% 0.0% 5.0% 90.0% 5.0% 0.0% 0.0% 0.0% 0.0% 4 4 

2465 2470 0.0% 0.0% 6.2% 68.8% 25.0% 0.0% 0.0% 0.0% 0.0% 4 4 

2470 2475 0.0% 0.0% 8.7% 51.9% 39.3% 0.0% 0.0% 0.0% 0.0% 4 4 

2475 2480 0.0% 0.0% 12.8% 38.5% 48.6% 0.0% 0.0% 0.0% 0.0% 4 4 

2480 2485 0.0% 0.0% 18.5% 28.0% 53.4% 0.0% 0.0% 0.0% 0.0% 3 3 

2485 2490 0.0% 0.0% 25.9% 20.0% 54.0% 0.0% 0.0% 0.0% 0.0% 3 3 
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Chainage (m) Predicted state probability Actual 

value 

Actual 

state From  To State 1 State 2 State 3 State 4 State 5 State 6 State 7 State 8 State 9 

2490 2495 0.0% 0.0% 35.2% 14.1% 50.7% 0.0% 0.0% 0.0% 0.0% 3 3 

2495 2500 0.0% 0.0% 46.6% 9.8% 43.6% 0.0% 0.0% 0.0% 0.0% 3 3 

2500 2505 0.0% 0.0% 60.2% 7.0% 32.8% 0.0% 0.0% 0.1% 0.0% 3 3 

2505 2510 0.0% 0.0% 76.3% 5.4% 18.2% 0.0% 0.0% 0.1% 0.0% 3 3 

2510 2515 0.0% 5.0% 90.0% 5.0% 0.0% 0.0% 0.0% 0.0% 0.0% 3 3 

2515 2520 0.0% 0.0% 92.6% 4.8% 2.6% 0.0% 0.0% 0.0% 0.0% 3 3 

2520 2525 0.0% 0.0% 91.8% 4.3% 3.9% 0.0% 0.0% 0.0% 0.0% 3 3 

2525 2530 0.0% 0.0% 91.3% 3.9% 4.7% 0.0% 0.0% 0.0% 0.0% 3 3 

2530 2535 0.0% 0.0% 91.1% 3.7% 5.3% 0.0% 0.0% 0.0% 0.0% 3 3 

2535 2540 0.0% 0.0% 91.1% 3.5% 5.4% 0.0% 0.0% 0.0% 0.0% 3 3 

2540 2545 0.0% 0.0% 91.3% 3.6% 5.1% 0.0% 0.0% 0.0% 0.0% 3 3 

2545 2550 0.0% 0.0% 91.8% 3.7% 4.5% 0.0% 0.0% 0.0% 0.0% 3 3 

2550 2555 0.0% 0.0% 92.6% 4.0% 3.4% 0.0% 0.0% 0.0% 0.0% 3 3 

2555 2560 0.0% 0.0% 93.6% 4.4% 1.9% 0.0% 0.0% 0.0% 0.0% 3 3 

2560 2565 0.0% 5.0% 90.0% 5.0% 0.0% 0.0% 0.0% 0.0% 0.0% 3 3 

2565 2570 0.0% 0.0% 92.6% 4.8% 2.6% 0.0% 0.0% 0.0% 0.0% 3 3 

2570 2575 0.0% 0.0% 91.8% 4.3% 3.9% 0.0% 0.0% 0.0% 0.0% 3 3 

2575 2580 0.0% 0.0% 91.3% 3.9% 4.7% 0.0% 0.0% 0.0% 0.0% 3 3 

2580 2585 0.0% 0.0% 91.1% 3.7% 5.3% 0.0% 0.0% 0.0% 0.0% 3 3 

2585 2590 0.0% 0.0% 91.1% 3.5% 5.4% 0.0% 0.0% 0.0% 0.0% 3 3 

2590 2595 0.0% 0.0% 91.3% 3.6% 5.1% 0.0% 0.0% 0.0% 0.0% 3 3 

2595 2600 0.0% 0.0% 91.8% 3.7% 4.5% 0.0% 0.0% 0.0% 0.0% 3 3 

2600 2605 0.0% 0.0% 92.6% 4.0% 3.4% 0.0% 0.0% 0.0% 0.0% 3 3 

2605 2610 0.0% 0.0% 93.6% 4.4% 1.9% 0.0% 0.0% 0.0% 0.0% 3 3 

2610 2615 0.0% 5.0% 90.0% 5.0% 0.0% 0.0% 0.0% 0.0% 0.0% 3 3 

Table F.4 Comparison between predicted and actual Jr in Subsection 2 

Chainage (m) Predicted state probability Actual 

value 

Actual 

state 
From To State 1  State 2  State 3 State 4 State 5 State 6 State 7 

2010 2015 0.0% 5.0% 5.0% 85.0% 5.0% 0.0% 0.0% 1.5 4 

2015 2020 0.4% 0.0% 0.0% 91.3% 8.3% 0.0% 0.0% 1.5 4 

2020 2025 0.8% 0.0% 0.0% 92.5% 6.7% 0.0% 0.0% 1.5 4 

2025 2030 1.1% 0.0% 0.0% 93.1% 5.8% 0.0% 0.0% 1.5 4 

2030 2035 1.4% 0.0% 0.0% 93.3% 5.2% 0.0% 0.0% 1.5 4 

2035 2040 1.8% 0.0% 0.0% 93.2% 5.0% 0.0% 0.0% 1.5 4 

2040 2045 2.3% 0.0% 0.0% 92.6% 5.1% 0.0% 0.0% 1.5 4 

2045 2050 2.8% 0.0% 0.0% 91.6% 5.6% 0.0% 0.0% 1.5 4 

2050 2055 3.4% 0.0% 0.0% 90.1% 6.5% 0.0% 0.0% 1.5 4 

2055 2060 4.2% 0.0% 0.0% 87.9% 7.9% 0.0% 0.0% 1.5 4 
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Chainage (m) Predicted state probability Actual 

value 

Actual 

state 
From To State 1  State 2  State 3 State 4 State 5 State 6 State 7 

2060 2065 0.0% 5.0% 5.0% 85.0% 5.0% 0.0% 0.0% 1 5 

2065 2070 0.4% 0.0% 0.0% 91.3% 8.3% 0.0% 0.0% 1.5 4 

2070 2075 0.8% 0.0% 0.0% 92.5% 6.7% 0.0% 0.0% 1.5 4 

2075 2080 1.1% 0.0% 0.0% 93.1% 5.8% 0.0% 0.0% 1.5 4 

2080 2085 1.4% 0.0% 0.0% 93.3% 5.2% 0.0% 0.0% 1.5 4 

2085 2090 1.8% 0.0% 0.0% 93.2% 5.0% 0.0% 0.0% 1.5 4 

2090 2095 2.3% 0.0% 0.0% 92.6% 5.1% 0.0% 0.0% 1.5 4 

2095 2100 2.8% 0.0% 0.0% 91.6% 5.6% 0.0% 0.0% 1.5 4 

2100 2105 3.4% 0.0% 0.0% 90.1% 6.5% 0.0% 0.0% 1.5 4 

2105 2110 4.2% 0.0% 0.0% 87.9% 7.9% 0.0% 0.0% 1.5 4 

2110 2115 0.0% 5.0% 5.0% 85.0% 5.0% 0.0% 0.0% 1.5 4 

2115 2120 0.4% 0.0% 0.0% 91.3% 8.3% 0.0% 0.0% 1.5 4 

2120 2125 0.8% 0.0% 0.0% 92.5% 6.7% 0.0% 0.0% 1.5 4 

2125 2130 1.1% 0.0% 0.0% 93.1% 5.8% 0.0% 0.0% 1.5 4 

2130 2135 1.4% 0.0% 0.0% 93.3% 5.2% 0.0% 0.0% 1.5 4 

2135 2140 1.8% 0.0% 0.0% 93.2% 5.0% 0.0% 0.0% 1.5 4 

2140 2145 2.3% 0.0% 0.0% 92.6% 5.1% 0.0% 0.0% 1.5 4 

2145 2150 2.8% 0.0% 0.0% 91.6% 5.6% 0.0% 0.0% 1.5 4 

2150 2155 3.4% 0.0% 0.0% 90.1% 6.5% 0.0% 0.0% 1.5 4 

2155 2160 4.2% 0.0% 0.0% 87.9% 7.9% 0.0% 0.0% 1.5 4 

2160 2165 0.0% 5.0% 5.0% 85.0% 5.0% 0.0% 0.0% 1.5 4 

2165 2170 0.4% 0.0% 0.0% 91.3% 8.3% 0.0% 0.0% 1.5 4 

2170 2175 0.8% 0.0% 0.0% 92.5% 6.7% 0.0% 0.0% 1.5 4 

2175 2180 1.1% 0.0% 0.0% 93.1% 5.8% 0.0% 0.0% 1 5 

2180 2185 1.4% 0.0% 0.0% 93.3% 5.2% 0.0% 0.0% 1.5 4 

2185 2190 1.8% 0.0% 0.0% 93.2% 5.0% 0.0% 0.0% 1.5 4 

2190 2195 2.3% 0.0% 0.0% 92.6% 5.1% 0.0% 0.0% 1.5 4 

2195 2200 2.8% 0.0% 0.0% 91.6% 5.6% 0.0% 0.0% 1.5 4 

2200 2205 3.4% 0.0% 0.0% 90.1% 6.5% 0.0% 0.0% 1.5 4 

2205 2210 4.2% 0.0% 0.0% 87.9% 7.9% 0.0% 0.0% 1.5 4 

2210 2215 0.0% 5.0% 5.0% 85.0% 5.0% 0.0% 0.0% 1.5 4 

2215 2220 0.4% 0.0% 0.0% 91.3% 8.3% 0.0% 0.0% 1.5 4 

2220 2225 0.8% 0.0% 0.0% 92.5% 6.7% 0.0% 0.0% 1.5 4 

2225 2230 1.1% 0.0% 0.0% 93.1% 5.8% 0.0% 0.0% 1 5 

2230 2235 1.4% 0.0% 0.0% 93.3% 5.2% 0.0% 0.0% 1.5 4 

2235 2240 1.8% 0.0% 0.0% 93.2% 5.0% 0.0% 0.0% 1.5 4 

2240 2245 2.3% 0.0% 0.0% 92.6% 5.1% 0.0% 0.0% 1.5 4 

2245 2250 2.8% 0.0% 0.0% 91.6% 5.6% 0.0% 0.0% 1.5 4 

2250 2255 3.4% 0.0% 0.0% 90.1% 6.5% 0.0% 0.0% 1.5 4 
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Chainage (m) Predicted state probability Actual 

value 

Actual 

state 
From To State 1  State 2  State 3 State 4 State 5 State 6 State 7 

2255 2260 4.2% 0.0% 0.0% 87.9% 7.9% 0.0% 0.0% 1.5 4 

2260 2265 0.0% 5.0% 5.0% 85.0% 5.0% 0.0% 0.0% 1.5 4 

2265 2270 0.4% 0.0% 0.0% 91.3% 8.3% 0.0% 0.0% 1.5 4 

2270 2275 0.8% 0.0% 0.0% 92.5% 6.7% 0.0% 0.0% 1.5 4 

2275 2280 1.1% 0.0% 0.0% 93.1% 5.8% 0.0% 0.0% 1.5 4 

2280 2285 1.4% 0.0% 0.0% 93.3% 5.2% 0.0% 0.0% 1.5 4 

2285 2290 1.8% 0.0% 0.0% 93.2% 5.0% 0.0% 0.0% 1.5 4 

2290 2295 2.3% 0.0% 0.0% 92.6% 5.1% 0.0% 0.0% 1.5 4 

2295 2300 2.8% 0.0% 0.0% 91.6% 5.6% 0.0% 0.0% 1.5 4 

2300 2305 3.4% 0.0% 0.0% 90.1% 6.5% 0.0% 0.0% 1.5 4 

2305 2310 4.2% 0.0% 0.0% 87.9% 7.9% 0.0% 0.0% 1.5 4 

2310 2315 0.0% 5.0% 5.0% 85.0% 5.0% 0.0% 0.0% 1.5 4 

2315 2320 0.4% 0.0% 0.0% 91.3% 8.3% 0.0% 0.0% 1.5 4 

2320 2325 0.8% 0.0% 0.0% 92.5% 6.7% 0.0% 0.0% 1.5 4 

2325 2330 1.1% 0.0% 0.0% 93.1% 5.8% 0.0% 0.0% 1.5 4 

2330 2335 1.4% 0.0% 0.0% 93.3% 5.2% 0.0% 0.0% 1.5 4 

2335 2340 1.8% 0.0% 0.0% 93.2% 5.0% 0.0% 0.0% 1.5 4 

2340 2345 2.3% 0.0% 0.0% 92.6% 5.1% 0.0% 0.0% 1.5 4 

2345 2350 2.8% 0.0% 0.0% 91.6% 5.6% 0.0% 0.0% 1.5 4 

2350 2355 3.4% 0.0% 0.0% 90.1% 6.5% 0.0% 0.0% 1.5 4 

2355 2360 4.2% 0.0% 0.0% 87.9% 7.9% 0.0% 0.0% 1.5 4 

2360 2365 0.0% 5.0% 5.0% 85.0% 5.0% 0.0% 0.0% 1.5 4 

2365 2370 0.2% 0.0% 0.0% 88.7% 11.0% 0.0% 0.0% 1.5 4 

2370 2375 0.4% 0.0% 0.0% 88.4% 11.2% 0.0% 0.0% 1.5 4 

2375 2380 0.5% 0.0% 0.0% 87.2% 12.3% 0.0% 0.0% 1.5 4 

2380 2385 0.5% 0.0% 0.0% 84.9% 14.6% 0.0% 0.0% 1.5 4 

2385 2390 0.5% 0.0% 0.0% 81.2% 18.3% 0.0% 0.0% 1.5 4 

2390 2395 0.4% 0.0% 0.0% 75.5% 24.1% 0.0% 0.0% 1.5 4 

2395 2400 0.3% 0.0% 0.0% 66.8% 32.9% 0.0% 0.0% 1 5 

2400 2405 0.2% 0.0% 0.0% 53.7% 46.1% 0.0% 0.0% 1 5 

2405 2410 0.1% 0.0% 0.0% 34.0% 65.9% 0.0% 0.0% 1 5 

2410 2415 0.0% 0.0% 5.0% 5.0% 85.0% 5.0% 0.0% 1 5 

2415 2420 0.1% 0.0% 0.0% 37.6% 62.3% 0.0% 0.0% 1 5 

2420 2425 0.3% 0.0% 0.0% 56.4% 43.3% 0.0% 0.0% 1 5 

2425 2430 0.6% 0.0% 0.0% 68.7% 30.6% 0.0% 0.0% 1 5 

2430 2435 1.0% 0.0% 0.0% 76.8% 22.2% 0.0% 0.0% 1 5 

2435 2440 1.4% 0.0% 0.0% 81.9% 16.7% 0.0% 0.0% 1.5 4 

2440 2445 1.8% 0.0% 0.0% 85.0% 13.2% 0.0% 0.0% 1.5 4 

2445 2450 2.4% 0.0% 0.0% 86.6% 11.0% 0.0% 0.0% 1.5 4 
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Chainage (m) Predicted state probability Actual 

value 

Actual 

state 
From To State 1  State 2  State 3 State 4 State 5 State 6 State 7 

2450 2455 3.1% 0.0% 0.0% 87.0% 9.9% 0.0% 0.0% 1.5 4 

2455 2460 4.0% 0.0% 0.0% 86.4% 9.6% 0.0% 0.0% 1.5 4 

2460 2465 0.0% 5.0% 5.0% 85.0% 5.0% 0.0% 0.0% 1.5 4 

2465 2470 0.4% 0.0% 0.0% 91.3% 8.3% 0.0% 0.0% 1.5 4 

2470 2475 0.8% 0.0% 0.0% 92.5% 6.7% 0.0% 0.0% 1.5 4 

2475 2480 1.1% 0.0% 0.0% 93.1% 5.8% 0.0% 0.0% 1.5 4 

2480 2485 1.4% 0.0% 0.0% 93.3% 5.2% 0.0% 0.0% 1.5 4 

2485 2490 1.8% 0.0% 0.0% 93.2% 5.0% 0.0% 0.0% 1.5 4 

2490 2495 2.3% 0.0% 0.0% 92.6% 5.1% 0.0% 0.0% 1 5 

2495 2500 2.8% 0.0% 0.0% 91.6% 5.6% 0.0% 0.0% 1 5 

2500 2505 3.4% 0.0% 0.0% 90.1% 6.5% 0.0% 0.0% 1.5 4 

2505 2510 4.2% 0.0% 0.0% 87.9% 7.9% 0.0% 0.0% 1.5 4 

2510 2515 0.0% 5.0% 5.0% 85.0% 5.0% 0.0% 0.0% 1.5 4 

2515 2520 0.4% 0.0% 0.0% 91.3% 8.3% 0.0% 0.0% 1.5 4 

2520 2525 0.8% 0.0% 0.0% 92.5% 6.7% 0.0% 0.0% 1.5 4 

2525 2530 1.1% 0.0% 0.0% 93.1% 5.8% 0.0% 0.0% 1.5 4 

2530 2535 1.4% 0.0% 0.0% 93.3% 5.2% 0.0% 0.0% 1.5 4 

2535 2540 1.8% 0.0% 0.0% 93.2% 5.0% 0.0% 0.0% 1.5 4 

2540 2545 2.3% 0.0% 0.0% 92.6% 5.1% 0.0% 0.0% 1.5 4 

2545 2550 2.8% 0.0% 0.0% 91.6% 5.6% 0.0% 0.0% 1.5 4 

2550 2555 3.4% 0.0% 0.0% 90.1% 6.5% 0.0% 0.0% 1.5 4 

2555 2560 4.2% 0.0% 0.0% 87.9% 7.9% 0.0% 0.0% 1.5 4 

2560 2565 0.0% 5.0% 5.0% 85.0% 5.0% 0.0% 0.0% 1.5 4 

2565 2570 0.4% 0.0% 0.0% 91.3% 8.3% 0.0% 0.0% 1.5 4 

2570 2575 0.8% 0.0% 0.0% 92.5% 6.7% 0.0% 0.0% 1.5 4 

2575 2580 1.1% 0.0% 0.0% 93.1% 5.8% 0.0% 0.0% 1.5 4 

2580 2585 1.4% 0.0% 0.0% 93.3% 5.2% 0.0% 0.0% 1.5 4 

2585 2590 1.8% 0.0% 0.0% 93.2% 5.0% 0.0% 0.0% 1.5 4 

2590 2595 2.3% 0.0% 0.0% 92.6% 5.1% 0.0% 0.0% 1.5 4 

2595 2600 2.8% 0.0% 0.0% 91.6% 5.6% 0.0% 0.0% 1.5 4 

2600 2605 3.4% 0.0% 0.0% 90.1% 6.5% 0.0% 0.0% 1.5 4 

2605 2610 4.2% 0.0% 0.0% 87.9% 7.9% 0.0% 0.0% 1.5 4 

2610 2615 0.0% 5.0% 5.0% 85.0% 5.0% 0.0% 0.0% 1.5 4 

Table F.5 Comparison between predicted and actual Ja in Subsection 2 

Chainage (m) Predicted state probability 

Actual 

value 

Actual 

state From To 

 

State 

1 

 State 

2 

State 

3 

 State 

4 

 State 

5 

 State 

6 

 State 

7 

 State 

8 

 State 

9 

 State 

10 

2010 2015 0% 5.0% 85.0% 5.0% 5% 0% 0% 0% 0% 0% 2 3 
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Chainage (m) Predicted state probability 

Actual 

value 

Actual 

state From To 

 

State 

1 

 State 

2 

State 

3 

 State 

4 

 State 

5 

 State 

6 

 State 

7 

 State 

8 

 State 

9 

 State 

10 

2015 2020 0% 3.9% 89.1% 7.0% 0% 0% 0% 0% 0% 0% 2 3 

2020 2025 0% 2.8% 89.5% 7.7% 0% 0% 0% 0% 0% 0% 2 3 

2025 2030 0% 2.2% 89.5% 8.3% 0% 0% 0% 0% 0% 0% 2 3 

2030 2035 0% 1.8% 89.3% 8.8% 0% 0% 0% 0% 0% 0% 2 3 

2035 2040 0% 1.7% 89.0% 9.2% 0% 0% 0% 0% 0% 0% 2 3 

2040 2045 0% 1.8% 88.6% 9.6% 0% 0% 0% 0% 0% 0% 2 3 

2045 2050 0% 2.0% 88.1% 9.8% 0% 0% 0% 0% 0% 0% 2 3 

2050 2055 0% 2.6% 87.5% 10.0% 0% 0% 0% 0% 0% 0% 2 3 

2055 2060 0% 3.5% 86.5% 10.1% 0% 0% 0% 0% 0% 0% 2 3 

2060 2065 0% 5.0% 85.0% 5.0% 5% 0% 0% 0% 0% 0% 2 3 

2065 2070 0% 3.9% 89.1% 7.0% 0% 0% 0% 0% 0% 0% 2 3 

2070 2075 0% 2.8% 89.5% 7.7% 0% 0% 0% 0% 0% 0% 2 3 

2075 2080 0% 2.2% 89.5% 8.3% 0% 0% 0% 0% 0% 0% 2 3 

2080 2085 0% 1.8% 89.3% 8.8% 0% 0% 0% 0% 0% 0% 2 3 

2085 2090 0% 1.7% 89.0% 9.2% 0% 0% 0% 0% 0% 0% 2 3 

2090 2095 0% 1.8% 88.6% 9.6% 0% 0% 0% 0% 0% 0% 2 3 

2095 2100 0% 2.0% 88.1% 9.8% 0% 0% 0% 0% 0% 0% 2 3 

2100 2105 0% 2.6% 87.5% 10.0% 0% 0% 0% 0% 0% 0% 2 3 

2105 2110 0% 3.5% 86.5% 10.1% 0% 0% 0% 0% 0% 0% 2 3 

2110 2115 0% 5.0% 85.0% 5.0% 5% 0% 0% 0% 0% 0% 2 3 

2115 2120 0% 3.9% 89.1% 7.0% 0% 0% 0% 0% 0% 0% 2 3 

2120 2125 0% 2.8% 89.5% 7.7% 0% 0% 0% 0% 0% 0% 2 3 

2125 2130 0% 2.2% 89.5% 8.3% 0% 0% 0% 0% 0% 0% 2 3 

2130 2135 0% 1.8% 89.3% 8.8% 0% 0% 0% 0% 0% 0% 2 3 

2135 2140 0% 1.7% 89.0% 9.2% 0% 0% 0% 0% 0% 0% 2 3 

2140 2145 0% 1.8% 88.6% 9.6% 0% 0% 0% 0% 0% 0% 2 3 

2145 2150 0% 2.0% 88.1% 9.8% 0% 0% 0% 0% 0% 0% 2 3 

2150 2155 0% 2.6% 87.5% 10.0% 0% 0% 0% 0% 0% 0% 2 3 

2155 2160 0% 3.5% 86.5% 10.1% 0% 0% 0% 0% 0% 0% 2 3 

2160 2165 0% 5.0% 85.0% 5.0% 5% 0% 0% 0% 0% 0% 3 4 

2165 2170 0% 3.9% 89.1% 7.0% 0% 0% 0% 0% 0% 0% 2 3 

2170 2175 0% 2.8% 89.5% 7.7% 0% 0% 0% 0% 0% 0% 2 3 

2175 2180 0% 2.2% 89.5% 8.3% 0% 0% 0% 0% 0% 0% 2 3 

2180 2185 0% 1.8% 89.3% 8.8% 0% 0% 0% 0% 0% 0% 2 3 

2185 2190 0% 1.7% 89.0% 9.2% 0% 0% 0% 0% 0% 0% 2 3 

2190 2195 0% 1.8% 88.6% 9.6% 0% 0% 0% 0% 0% 0% 2 3 

2195 2200 0% 2.0% 88.1% 9.8% 0% 0% 0% 0% 0% 0% 2 3 

2200 2205 0% 2.6% 87.5% 10.0% 0% 0% 0% 0% 0% 0% 2 3 
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Chainage (m) Predicted state probability 

Actual 

value 

Actual 

state From To 

 

State 

1 

 State 

2 

State 

3 

 State 

4 

 State 

5 

 State 

6 

 State 

7 

 State 

8 

 State 

9 

 State 

10 

2205 2210 0% 3.5% 86.5% 10.1% 0% 0% 0% 0% 0% 0% 2 3 

2210 2215 0% 5.0% 85.0% 5.0% 5% 0% 0% 0% 0% 0% 2 3 

2215 2220 0% 3.9% 89.1% 7.0% 0% 0% 0% 0% 0% 0% 2 3 

2220 2225 0% 2.8% 89.5% 7.7% 0% 0% 0% 0% 0% 0% 2 3 

2225 2230 0% 2.2% 89.5% 8.3% 0% 0% 0% 0% 0% 0% 2 3 

2230 2235 0% 1.8% 89.3% 8.8% 0% 0% 0% 0% 0% 0% 2 3 

2235 2240 0% 1.7% 89.0% 9.2% 0% 0% 0% 0% 0% 0% 2 3 

2240 2245 0% 1.8% 88.6% 9.6% 0% 0% 0% 0% 0% 0% 2 3 

2245 2250 0% 2.0% 88.1% 9.8% 0% 0% 0% 0% 0% 0% 2 3 

2250 2255 0% 2.6% 87.5% 10.0% 0% 0% 0% 0% 0% 0% 2 3 

2255 2260 0% 3.5% 86.5% 10.1% 0% 0% 0% 0% 0% 0% 2 3 

2260 2265 0% 5.0% 85.0% 5.0% 5% 0% 0% 0% 0% 0% 2 3 

2265 2270 0% 3.9% 89.1% 7.0% 0% 0% 0% 0% 0% 0% 2 3 

2270 2275 0% 2.8% 89.5% 7.7% 0% 0% 0% 0% 0% 0% 3 4 

2275 2280 0% 2.2% 89.5% 8.3% 0% 0% 0% 0% 0% 0% 3 4 

2280 2285 0% 1.8% 89.3% 8.8% 0% 0% 0% 0% 0% 0% 3 4 

2285 2290 0% 1.7% 89.0% 9.2% 0% 0% 0% 0% 0% 0% 2 3 

2290 2295 0% 1.8% 88.6% 9.6% 0% 0% 0% 0% 0% 0% 2 3 

2295 2300 0% 2.0% 88.1% 9.8% 0% 0% 0% 0% 0% 0% 2 3 

2300 2305 0% 2.6% 87.5% 10.0% 0% 0% 0% 0% 0% 0% 2 3 

2305 2310 0% 3.5% 86.5% 10.1% 0% 0% 0% 0% 0% 0% 2 3 

2310 2315 0% 5.0% 85.0% 5.0% 5% 0% 0% 0% 0% 0% 2 3 

2315 2320 0% 3.9% 89.1% 7.0% 0% 0% 0% 0% 0% 0% 2 3 

2320 2325 0% 2.8% 89.5% 7.7% 0% 0% 0% 0% 0% 0% 2 3 

2325 2330 0% 2.2% 89.5% 8.3% 0% 0% 0% 0% 0% 0% 2 3 

2330 2335 0% 1.8% 89.3% 8.8% 0% 0% 0% 0% 0% 0% 2 3 

2335 2340 0% 1.7% 89.0% 9.2% 0% 0% 0% 0% 0% 0% 2 3 

2340 2345 0% 1.8% 88.6% 9.6% 0% 0% 0% 0% 0% 0% 2 3 

2345 2350 0% 2.0% 88.1% 9.8% 0% 0% 0% 0% 0% 0% 2 3 

2350 2355 0% 2.6% 87.5% 10.0% 0% 0% 0% 0% 0% 0% 2 3 

2355 2360 0% 3.5% 86.5% 10.1% 0% 0% 0% 0% 0% 0% 2 3 

2360 2365 0% 5.0% 85.0% 5.0% 5% 0% 0% 0% 0% 0% 2 3 

2365 2370 0% 3.9% 89.1% 7.0% 0% 0% 0% 0% 0% 0% 2 3 

2370 2375 0% 2.8% 89.5% 7.7% 0% 0% 0% 0% 0% 0% 2 3 

2375 2380 0% 2.2% 89.5% 8.3% 0% 0% 0% 0% 0% 0% 2 3 

2380 2385 0% 1.8% 89.3% 8.8% 0% 0% 0% 0% 0% 0% 2 3 

2385 2390 0% 1.7% 89.0% 9.2% 0% 0% 0% 0% 0% 0% 2 3 

2390 2395 0% 1.8% 88.6% 9.6% 0% 0% 0% 0% 0% 0% 1 2 
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Chainage (m) Predicted state probability 

Actual 

value 

Actual 

state From To 

 

State 

1 

 State 

2 

State 

3 

 State 

4 

 State 

5 

 State 

6 

 State 

7 

 State 

8 

 State 

9 

 State 

10 

2395 2400 0% 2.0% 88.1% 9.8% 0% 0% 0% 0% 0% 0% 2 3 

2400 2405 0% 2.6% 87.5% 10.0% 0% 0% 0% 0% 0% 0% 2 3 

2405 2410 0% 3.5% 86.5% 10.1% 0% 0% 0% 0% 0% 0% 1 2 

2410 2415 0% 5.0% 85.0% 5.0% 5% 0% 0% 0% 0% 0% 2 3 

2415 2420 0% 5.4% 88.4% 6.2% 0% 0% 0% 0% 0% 0% 2 3 

2420 2425 0% 5.3% 88.3% 6.4% 0% 0% 0% 0% 0% 0% 2 3 

2425 2430 0% 6.0% 87.6% 6.4% 0% 0% 0% 0% 0% 0% 2 3 

2430 2435 0% 7.5% 86.1% 6.4% 0% 0% 0% 0% 0% 0% 2 3 

2435 2440 0% 10.2% 83.6% 6.2% 0% 0% 0% 0% 0% 0% 2 3 

2440 2445 0% 14.8% 79.2% 6.0% 0% 0% 0% 0% 0% 0% 2 3 

2445 2450 0% 22.4% 71.8% 5.7% 0% 0% 0% 0% 0% 0% 1 2 

2450 2455 0% 35.1% 59.5% 5.4% 0% 0% 0% 0% 0% 0% 1 2 

2455 2460 0% 55.9% 38.9% 5.1% 0% 0% 0% 0% 0% 0% 1 2 

2460 2465 5% 85.0% 5.0% 5.0% 0% 0% 0% 0% 0% 0% 1 2 

2465 2470 0% 52.7% 41.2% 6.1% 0% 0% 0% 0% 0% 0% 1 2 

2470 2475 0% 32.8% 60.9% 6.4% 0% 0% 0% 0% 0% 0% 1 2 

2475 2480 0% 20.7% 72.4% 6.8% 0% 0% 0% 0% 0% 0% 1 2 

2480 2485 0% 13.5% 79.1% 7.4% 0% 0% 0% 0% 0% 0% 2 3 

2485 2490 0% 9.1% 82.9% 7.9% 0% 0% 0% 0% 0% 0% 2 3 

2490 2495 0% 6.6% 84.9% 8.5% 0% 0% 0% 0% 0% 0% 2 3 

2495 2500 0% 5.2% 85.9% 9.0% 0% 0% 0% 0% 0% 0% 2 3 

2500 2505 0% 4.5% 86.1% 9.4% 0% 0% 0% 0% 0% 0% 2 3 

2505 2510 0% 4.5% 85.8% 9.8% 0% 0% 0% 0% 0% 0% 2 3 

2510 2515 0% 5.0% 85.0% 5.0% 5% 0% 0% 0% 0% 0% 2 3 

2515 2520 0% 3.9% 89.1% 7.0% 0% 0% 0% 0% 0% 0% 2 3 

2520 2525 0% 2.8% 89.5% 7.7% 0% 0% 0% 0% 0% 0% 2 3 

2525 2530 0% 2.2% 89.5% 8.3% 0% 0% 0% 0% 0% 0% 2 3 

2530 2535 0% 1.8% 89.3% 8.8% 0% 0% 0% 0% 0% 0% 2 3 

2535 2540 0% 1.7% 89.0% 9.2% 0% 0% 0% 0% 0% 0% 2 3 

2540 2545 0% 1.8% 88.6% 9.6% 0% 0% 0% 0% 0% 0% 2 3 

2545 2550 0% 2.0% 88.1% 9.8% 0% 0% 0% 0% 0% 0% 2 3 

2550 2555 0% 2.6% 87.5% 10.0% 0% 0% 0% 0% 0% 0% 2 3 

2555 2560 0% 3.5% 86.5% 10.1% 0% 0% 0% 0% 0% 0% 2 3 

2560 2565 0% 5.0% 85.0% 5.0% 5% 0% 0% 0% 0% 0% 2 3 

2565 2570 0% 3.9% 89.1% 7.0% 0% 0% 0% 0% 0% 0% 2 3 

2570 2575 0% 2.8% 89.5% 7.7% 0% 0% 0% 0% 0% 0% 2 3 

2575 2580 0% 2.2% 89.5% 8.3% 0% 0% 0% 0% 0% 0% 2 3 

2580 2585 0% 1.8% 89.3% 8.8% 0% 0% 0% 0% 0% 0% 2 3 



 

197 

 

Chainage (m) Predicted state probability 

Actual 

value 

Actual 

state From To 

 

State 

1 

 State 

2 

State 

3 

 State 

4 

 State 

5 

 State 

6 

 State 

7 

 State 

8 

 State 

9 

 State 

10 

2585 2590 0% 1.7% 89.0% 9.2% 0% 0% 0% 0% 0% 0% 2 3 

2590 2595 0% 1.8% 88.6% 9.6% 0% 0% 0% 0% 0% 0% 2 3 

2595 2600 0% 2.0% 88.1% 9.8% 0% 0% 0% 0% 0% 0% 2 3 

2600 2605 0% 2.6% 87.5% 10.0% 0% 0% 0% 0% 0% 0% 2 3 

2605 2610 0% 3.5% 86.5% 10.1% 0% 0% 0% 0% 0% 0% 2 3 

2610 2615 0% 5.0% 85.0% 5.0% 5% 0% 0% 0% 0% 0% 2 3 

Table F.6 Comparison between predicted and actual Jw in Subsection 2 

Chainage (m) Predicted state probability Actual 

value 

Actual 

state From To State 1 State 2 State 3 State 4 State 5 State 6 

2010 2015 95% 5% 0% 0% 0% 0% 1 1 

2015 2020 95% 5% 0% 0% 0% 0% 1 1 

2020 2025 95% 5% 0% 0% 0% 0% 1 1 

2025 2030 94% 6% 0% 0% 0% 0% 1 1 

2030 2035 94% 6% 0% 0% 0% 0% 1 1 

2035 2040 94% 6% 0% 0% 0% 0% 1 1 

2040 2045 94% 6% 0% 0% 0% 0% 1 1 

2045 2050 94% 6% 0% 0% 0% 0% 1 1 

2050 2055 95% 5% 0% 0% 0% 0% 1 1 

2055 2060 95% 5% 0% 0% 0% 0% 1 1 

2060 2065 95% 5% 0% 0% 0% 0% 1 1 

2065 2070 95% 5% 0% 0% 0% 0% 1 1 

2070 2075 95% 5% 0% 0% 0% 0% 1 1 

2075 2080 94% 6% 0% 0% 0% 0% 1 1 

2080 2085 94% 6% 0% 0% 0% 0% 1 1 

2085 2090 94% 6% 0% 0% 0% 0% 1 1 

2090 2095 94% 6% 0% 0% 0% 0% 1 1 

2095 2100 94% 6% 0% 0% 0% 0% 1 1 

2100 2105 95% 5% 0% 0% 0% 0% 1 1 

2105 2110 95% 5% 0% 0% 0% 0% 1 1 

2110 2115 95% 5% 0% 0% 0% 0% 1 1 

2115 2120 95% 5% 0% 0% 0% 0% 1 1 

2120 2125 95% 5% 0% 0% 0% 0% 1 1 

2125 2130 94% 6% 0% 0% 0% 0% 1 1 

2130 2135 94% 6% 0% 0% 0% 0% 1 1 

2135 2140 94% 6% 0% 0% 0% 0% 1 1 

2140 2145 94% 6% 0% 0% 0% 0% 1 1 

2145 2150 94% 6% 0% 0% 0% 0% 1 1 

2150 2155 95% 5% 0% 0% 0% 0% 1 1 

2155 2160 95% 5% 0% 0% 0% 0% 1 1 

2160 2165 95% 5% 0% 0% 0% 0% 1 1 

2165 2170 95% 5% 0% 0% 0% 0% 1 1 

2170 2175 95% 5% 0% 0% 0% 0% 0.66 2 

2175 2180 94% 6% 0% 0% 0% 0% 0.5 3 

2180 2185 94% 6% 0% 0% 0% 0% 0.66 2 
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Chainage (m) Predicted state probability Actual 

value 

Actual 

state From To State 1 State 2 State 3 State 4 State 5 State 6 

2185 2190 94% 6% 0% 0% 0% 0% 0.66 2 

2190 2195 94% 6% 0% 0% 0% 0% 1 1 

2195 2200 94% 6% 0% 0% 0% 0% 1 1 

2200 2205 95% 5% 0% 0% 0% 0% 1 1 

2205 2210 95% 5% 0% 0% 0% 0% 1 1 

2210 2215 95% 5% 0% 0% 0% 0% 1 1 

2215 2220 95% 5% 0% 0% 0% 0% 1 1 

2220 2225 95% 5% 0% 0% 0% 0% 1 1 

2225 2230 94% 6% 0% 0% 0% 0% 1 1 

2230 2235 94% 6% 0% 0% 0% 0% 1 1 

2235 2240 94% 6% 0% 0% 0% 0% 1 1 

2240 2245 94% 6% 0% 0% 0% 0% 0.66 2 

2245 2250 94% 6% 0% 0% 0% 0% 0.66 2 

2250 2255 95% 5% 0% 0% 0% 0% 1 1 

2255 2260 95% 5% 0% 0% 0% 0% 1 1 

2260 2265 95% 5% 0% 0% 0% 0% 1 1 

2265 2270 95% 5% 0% 0% 0% 0% 1 1 

2270 2275 95% 5% 0% 0% 0% 0% 0.66 2 

2275 2280 94% 6% 0% 0% 0% 0% 0.66 2 

2280 2285 94% 6% 0% 0% 0% 0% 0.66 2 

2285 2290 94% 6% 0% 0% 0% 0% 1 1 

2290 2295 94% 6% 0% 0% 0% 0% 1 1 

2295 2300 94% 6% 0% 0% 0% 0% 1 1 

2300 2305 95% 5% 0% 0% 0% 0% 1 1 

2305 2310 95% 5% 0% 0% 0% 0% 1 1 

2310 2315 95% 5% 0% 0% 0% 0% 1 1 

2315 2320 95% 5% 0% 0% 0% 0% 1 1 

2320 2325 95% 5% 0% 0% 0% 0% 1 1 

2325 2330 94% 6% 0% 0% 0% 0% 1 1 

2330 2335 94% 6% 0% 0% 0% 0% 1 1 

2335 2340 94% 6% 0% 0% 0% 0% 1 1 

2340 2345 94% 6% 0% 0% 0% 0% 1 1 

2345 2350 94% 6% 0% 0% 0% 0% 1 1 

2350 2355 95% 5% 0% 0% 0% 0% 1 1 

2355 2360 95% 5% 0% 0% 0% 0% 1 1 

2360 2365 95% 5% 0% 0% 0% 0% 1 1 

2365 2370 95% 5% 0% 0% 0% 0% 1 1 

2370 2375 95% 5% 0% 0% 0% 0% 1 1 

2375 2380 94% 6% 0% 0% 0% 0% 1 1 

2380 2385 94% 6% 0% 0% 0% 0% 1 1 

2385 2390 94% 6% 0% 0% 0% 0% 1 1 

2390 2395 94% 6% 0% 0% 0% 0% 1 1 

2395 2400 94% 6% 0% 0% 0% 0% 1 1 

2400 2405 95% 5% 0% 0% 0% 0% 1 1 

2405 2410 95% 5% 0% 0% 0% 0% 1 1 

2410 2415 95% 5% 0% 0% 0% 0% 1 1 

2415 2420 95% 5% 0% 0% 0% 0% 1 1 

2420 2425 95% 5% 0% 0% 0% 0% 1 1 

2425 2430 94% 6% 0% 0% 0% 0% 1 1 
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Chainage (m) Predicted state probability Actual 

value 

Actual 

state From To State 1 State 2 State 3 State 4 State 5 State 6 

2430 2435 94% 6% 0% 0% 0% 0% 1 1 

2435 2440 94% 6% 0% 0% 0% 0% 1 1 

2440 2445 94% 6% 0% 0% 0% 0% 1 1 

2445 2450 94% 6% 0% 0% 0% 0% 1 1 

2450 2455 95% 5% 0% 0% 0% 0% 1 1 

2455 2460 95% 5% 0% 0% 0% 0% 1 1 

2460 2465 95% 5% 0% 0% 0% 0% 1 1 

2465 2470 95% 5% 0% 0% 0% 0% 1 1 

2470 2475 95% 5% 0% 0% 0% 0% 1 1 

2475 2480 94% 6% 0% 0% 0% 0% 1 1 

2480 2485 94% 6% 0% 0% 0% 0% 1 1 

2485 2490 94% 6% 0% 0% 0% 0% 1 1 

2490 2495 94% 6% 0% 0% 0% 0% 1 1 

2495 2500 94% 6% 0% 0% 0% 0% 1 1 

2500 2505 95% 5% 0% 0% 0% 0% 1 1 

2505 2510 95% 5% 0% 0% 0% 0% 1 1 

2510 2515 95% 5% 0% 0% 0% 0% 1 1 

2515 2520 95% 5% 0% 0% 0% 0% 1 1 

2520 2525 95% 5% 0% 0% 0% 0% 1 1 

2525 2530 94% 6% 0% 0% 0% 0% 1 1 

2530 2535 94% 6% 0% 0% 0% 0% 1 1 

2535 2540 94% 6% 0% 0% 0% 0% 1 1 

2540 2545 94% 6% 0% 0% 0% 0% 1 1 

2545 2550 94% 6% 0% 0% 0% 0% 1 1 

2550 2555 95% 5% 0% 0% 0% 0% 1 1 

2555 2560 95% 5% 0% 0% 0% 0% 1 1 

2560 2565 95% 5% 0% 0% 0% 0% 1 1 

2565 2570 95% 5% 0% 0% 0% 0% 1 1 

2570 2575 95% 5% 0% 0% 0% 0% 1 1 

2575 2580 94% 6% 0% 0% 0% 0% 1 1 

2580 2585 94% 6% 0% 0% 0% 0% 1 1 

2585 2590 94% 6% 0% 0% 0% 0% 1 1 

2590 2595 94% 6% 0% 0% 0% 0% 1 1 

2595 2600 94% 6% 0% 0% 0% 0% 1 1 

2600 2605 95% 5% 0% 0% 0% 0% 1 1 

2605 2610 95% 5% 0% 0% 0% 0% 1 1 

2610 2615 95% 5% 0% 0% 0% 0% 1 1 

Table F.7 Comparison between predicted and actual SRF in Subsection 2 

Chainage (m) Predicted state probability Actual 

value 

Actual 

state From To State 1 State 2 State 3 State 4 State 5 State 6 State 7 State 8 State 9 

2010 2015 0.00 0.00 0.00 0.05 0.90 0.05 0.00 0.00 0.00 1 5 

2015 2020 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2020 2025 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2025 2030 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2030 2035 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2035 2040 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2040 2045 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 
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Chainage (m) Predicted state probability Actual 

value 

Actual 

state From To State 1 State 2 State 3 State 4 State 5 State 6 State 7 State 8 State 9 

2045 2050 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2050 2055 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2055 2060 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2060 2065 0.00 0.00 0.00 0.05 0.90 0.05 0.00 0.00 0.00 2.5 4 

2065 2070 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2070 2075 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2075 2080 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2080 2085 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2085 2090 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2090 2095 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2095 2100 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2100 2105 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2105 2110 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2110 2115 0.00 0.00 0.00 0.05 0.90 0.05 0.00 0.00 0.00 1 5 

2115 2120 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2120 2125 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2125 2130 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2130 2135 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2135 2140 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2140 2145 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2145 2150 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2150 2155 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2155 2160 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2160 2165 0.00 0.00 0.00 0.05 0.90 0.05 0.00 0.00 0.00 1 5 

2165 2170 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2170 2175 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2175 2180 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2180 2185 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2185 2190 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2190 2195 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2195 2200 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2200 2205 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2205 2210 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2210 2215 0.00 0.00 0.00 0.05 0.90 0.05 0.00 0.00 0.00 1 5 

2215 2220 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2220 2225 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2225 2230 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2230 2235 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2235 2240 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2240 2245 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2245 2250 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2250 2255 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2255 2260 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2260 2265 0.00 0.00 0.00 0.05 0.90 0.05 0.00 0.00 0.00 1 5 

2265 2270 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2270 2275 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2275 2280 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2280 2285 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2285 2290 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 
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Chainage (m) Predicted state probability Actual 

value 

Actual 

state From To State 1 State 2 State 3 State 4 State 5 State 6 State 7 State 8 State 9 

2290 2295 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2295 2300 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2300 2305 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2305 2310 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2310 2315 0.00 0.00 0.00 0.05 0.90 0.05 0.00 0.00 0.00 1 5 

2315 2320 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2320 2325 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2325 2330 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2330 2335 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2335 2340 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2340 2345 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2345 2350 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2350 2355 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 4 

2355 2360 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 4 

2360 2365 0.00 0.00 0.00 0.05 0.90 0.05 0.00 0.00 0.00 1 5 

2365 2370 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2370 2375 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2375 2380 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2380 2385 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2385 2390 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2390 2395 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2395 2400 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2400 2405 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2405 2410 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2410 2415 0.00 0.00 0.00 0.05 0.90 0.05 0.00 0.00 0.00 1 5 

2415 2420 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2420 2425 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2425 2430 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2430 2435 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2435 2440 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2440 2445 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2445 2450 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 2.5 4 

2450 2455 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 2.5 4 

2455 2460 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2460 2465 0.00 0.00 0.00 0.05 0.90 0.05 0.00 0.00 0.00 1 5 

2465 2470 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2470 2475 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2475 2480 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2480 2485 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 2.5 4 

2485 2490 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 2.5 4 

2490 2495 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2495 2500 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2500 2505 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2505 2510 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2510 2515 0.00 0.00 0.00 0.05 0.90 0.05 0.00 0.00 0.00 1 5 

2515 2520 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2520 2525 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2525 2530 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2530 2535 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 
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Chainage (m) Predicted state probability Actual 

value 

Actual 

state From To State 1 State 2 State 3 State 4 State 5 State 6 State 7 State 8 State 9 

2535 2540 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2540 2545 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2545 2550 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2550 2555 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2555 2560 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2560 2565 0.00 0.00 0.00 0.05 0.90 0.05 0.00 0.00 0.00 1 5 

2565 2570 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2570 2575 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2575 2580 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2580 2585 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2585 2590 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2590 2595 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2595 2600 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2600 2605 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2605 2610 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1 5 

2610 2615 0.00 0.00 0.00 0.05 0.90 0.05 0.00 0.00 0.00 1 5 

Table F.8 Comparison between predicted and actual Q value in Subsection 2 

Chainage (m) Predicted Q value Actual Q 

value From To Mean SD 

2010 2015 11.1 5.4 10.0 

2015 2020 11.3 5.0 10.0 

2020 2025 11.4 6.0 10.0 

2025 2030 11.3 6.2 10.0 

2030 2035 11.3 6.6 10.0 

2035 2040 11.0 6.4 11.3 

2040 2045 10.8 6.4 11.3 

2045 2050 10.4 6.1 5.0 

2050 2055 9.9 5.8 6.3 

2055 2060 9.4 5.2 8.8 

2060 2065 7.8 3.9 3.8 

2065 2070 8.5 4.0 8.8 

2070 2075 8.9 4.6 8.1 

2075 2080 9.3 5.1 8.1 

2080 2085 9.4 5.1 8.8 

2085 2090 9.5 5.1 8.8 

2090 2095 9.6 5.5 8.8 

2095 2100 9.6 5.3 8.8 

2100 2105 9.4 5.3 8.8 

2105 2110 9.1 4.8 8.8 

2110 2115 7.7 3.6 9.4 

2115 2120 8.5 3.9 9.4 
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Chainage (m) Predicted Q value Actual Q 

value From To Mean SD 

2120 2125 9.0 4.8 7.5 

2125 2130 9.2 5.0 8.1 

2130 2135 9.5 5.4 8.1 

2135 2140 9.6 5.3 10.0 

2140 2145 9.5 5.2 8.8 

2145 2150 9.5 5.2 8.8 

2150 2155 9.4 5.2 8.8 

2155 2160 9.1 5.0 8.8 

2160 2165 7.8 3.9 5.0 

2165 2170 8.5 4.1 15.0 

2170 2175 8.9 4.7 9.9 

2175 2180 9.2 5.0 4.1 

2180 2185 9.4 5.1 5.8 

2185 2190 9.6 5.4 5.8 

2190 2195 9.6 5.4 7.5 

2195 2200 9.6 5.3 7.5 

2200 2205 9.4 5.3 8.1 

2205 2210 9.2 5.1 8.1 

2210 2215 7.7 3.9 13.1 

2215 2220 9.3 5.0 13.1 

2220 2225 10.5 6.0 8.8 

2225 2230 11.8 7.0 5.8 

2230 2235 12.9 8.3 17.5 

2235 2240 14.3 9.1 20.0 

2240 2245 15.8 10.2 14.0 

2245 2250 17.2 11.0 14.0 

2250 2255 18.9 11.8 10.6 

2255 2260 20.7 12.0 10.6 

2260 2265 22.1 10.1 18.8 

2265 2270 20.1 9.9 17.5 

2270 2275 19.3 11.0 3.3 

2275 2280 18.5 11.0 3.3 

2280 2285 17.6 10.9 3.9 

2285 2290 16.7 10.2 10.0 

2290 2295 15.9 9.8 10.0 

2295 2300 14.9 8.8 10.0 

2300 2305 13.9 8.1 22.5 

2305 2310 13.0 7.4 22.5 

2310 2315 12.1 6.0 11.3 
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Chainage (m) Predicted Q value Actual Q 

value From To Mean SD 

2315 2320 11.6 4.2 11.3 

2320 2325 12.0 4.8 11.3 

2325 2330 12.6 5.4 11.3 

2330 2335 13.3 6.1 21.3 

2335 2340 14.2 6.8 21.3 

2340 2345 15.2 7.1 20.0 

2345 2350 16.5 8.3 20.0 

2350 2355 18.0 8.8 17.5 

2355 2360 19.9 9.9 21.3 

2360 2365 22.1 10.3 20.0 

2365 2370 18.7 7.0 20.0 

2370 2375 17.1 6.7 22.5 

2375 2380 15.8 6.5 22.5 

2380 2385 14.6 6.0 20.0 

2385 2390 13.6 5.5 10.0 

2390 2395 12.6 5.1 18.8 

2395 2400 11.6 4.6 6.7 

2400 2405 10.5 4.2 6.7 

2405 2410 9.4 3.7 15.0 

2410 2415 7.1 3.4 7.5 

2415 2420 9.4 3.3 7.9 

2420 2425 10.4 3.9 7.9 

2425 2430 11.3 4.6 7.9 

2430 2435 12.2 5.2 7.9 

2435 2440 13.3 6.0 11.9 

2440 2445 14.7 6.9 16.9 

2445 2450 16.6 8.5 13.5 

2450 2455 19.5 10.4 14.3 

2455 2460 24.1 12.9 35.6 

2460 2465 30.9 15.4 33.8 

2465 2470 21.7 10.0 33.8 

2470 2475 18.1 8.1 31.9 

2475 2480 16.1 7.2 31.9 

2480 2485 15.2 6.8 8.5 

2485 2490 15.0 6.9 7.0 

2490 2495 15.4 7.1 8.3 

2495 2500 16.3 7.5 8.3 

2500 2505 17.8 9.2 15.0 

2505 2510 19.8 9.8 20.0 
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Chainage (m) Predicted Q value Actual Q 

value From To Mean SD 

2510 2515 22.2 10.5 22.5 

2515 2520 20.3 6.4 22.5 

2520 2525 20.0 6.4 21.3 

2525 2530 19.8 6.7 21.3 

2530 2535 19.7 7.0 20.0 

2535 2540 19.8 7.3 20.0 

2540 2545 19.9 7.7 20.0 

2545 2550 20.2 8.2 17.5 

2550 2555 20.7 8.8 17.5 

2555 2560 21.4 9.3 21.3 

2560 2565 22.2 10.3 22.5 

2565 2570 20.3 6.7 22.5 

2570 2575 19.9 6.7 25.0 

2575 2580 19.8 7.1 25.0 

2580 2585 19.7 7.2 25.0 

2585 2590 19.7 7.6 25.0 

2590 2595 19.9 7.9 25.0 

2595 2600 20.2 8.2 25.0 

2600 2605 20.7 8.8 25.0 

2605 2610 21.4 9.5 25.0 

2610 2615 22.0 10.1 25.0 
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G.1 Accomplishments 

G.1.1 What was done? What was learned?  

• A Markovian Q-based prediction model has been proposed using the MCS technique to 

provide the probability distribution of rock mass quality along the tunnel alignment before 

construction. 

• An MCS-based uncertainty analysis framework in the Q-system has been developed to 

probabilistically characterize the uncertainty in input parameter of Q-system and its effects 

on rock mass characterization and ground response by applying the MCS technique with 

appropriate empirical correlations. 

• A reliability assessment with the strain-based failure criterion has been performed using the 

FORM (First-Order Reliability Model) algorithm. 

• The reliability evaluation procedures were applied on the excavation stability The Shimizu 

Highway Tunnel in Japan and the engineering feasibility study of the future extension of the 

Eisenhower-Johnson Tunnel in Colorado.  

 

G.2 How have the results been disseminated? 

• The results were presented at the 2019 Society of Mining Engineers Annual Meeting, Denver, 

Colorado, Feb. 26, 2019.  

• One journal paper has been accepted and published in a journal. 

• A second journal paper was submitted and reviewed in a journal and is under revision. 

• A third journal paper is completed and is under review in a journal. 

• The results were presented at UTC-UTI workshops. 

G.3 Participants and Collaborating Organizations 

Colorado Department of Transportation. 

G.4 Outputs  

Journal publications 

Lu, H., Kim, E, and Gutierrez, M. (2020). “Monte Carlo Simulation (MCS)-Based Uncertainty 

Analysis of Rock Mass Quality Q in Underground Construction,” Tunnelling and Underground 

Space Technology, 10.1016/j.tust.2019.103089. 
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Conference presentations and proceedings 

Lu, H., Kim, E. and Gutierrez. M. (2019). “Probability-based uncertainty analysis of rock mass 

quality in underground excavations.” SME 2019 Annual Meeting, Denver, Colorado, Feb. 26, 

2019. 

G.4 Outcomes 

• The proposed Q-based prediction model was shown to be valuable in reducing 

uncertainties and risks involved in rock mass classifications and can serve as a 

complement to geology exploration in the planning and preliminary design stage of 

underground construction. It can also provide insights into the decision support for the 

design of excavation sequence and support schemes for the underground structures. 

• The proposed framework of the MCS-based uncertainty analysis in the probabilistic Q-

system can provide an approach for systematically characterizing the uncertainty in the 

rock mass classification and its propagation to associated rock mass parameters. The 

framework can also serve as a useful tool to obtain insightful information for the 

probabilistic evaluation of ground responses and support performance of underground 

structures. 

• The reliability assessment using the Q-based empirical approach can be used as a 

complement to analytical and numerical approaches in the preliminary evaluation of the 

stability of underground excavations. 

G.6 Impacts 

• Using the improved tool developed in this research project, tunnel lining design can be 

more efficient resulting in more cost-effective, safer and more reliable tunnel structures. 
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